Evaluating patient-specific neoadjuvant regimens for breast cancer via a mathematical model constrained by quantitative magnetic resonance imaging data

乳腺癌 磁共振成像 养生 医学 临床试验 新辅助治疗 加药 肿瘤科 癌症 医学物理学 内科学 放射科
作者
Angela M. Jarrett,David A. Hormuth,Chengyue Wu,Anum S. Kazerouni,David A. Ekrut,John Virostko,Anna G. Sorace,Julie C. DiCarlo,Jeanne Kowalski,Debra A. Patt,Boone Goodgame,Sarah Avery,Thomas E. Yankeelov
出处
期刊:Neoplasia [Elsevier BV]
卷期号:22 (12): 820-830 被引量:46
标识
DOI:10.1016/j.neo.2020.10.011
摘要

The ability to accurately predict response and then rigorously optimize a therapeutic regimen on a patient-specific basis, would transform oncology. Toward this end, we have developed an experimental-mathematical framework that integrates quantitative magnetic resonance imaging (MRI) data into a biophysical model to predict patient-specific treatment response of locally advanced breast cancer to neoadjuvant therapy. Diffusion-weighted and dynamic contrast-enhanced MRI data is collected prior to therapy, after 1 cycle of therapy, and at the completion of the first therapeutic regimen. The model is initialized and calibrated with the first 2 patient-specific MRI data sets to predict response at the third, which is then compared to patient outcomes (N = 18). The model's predictions for total cellularity, total volume, and the longest axis at the completion of the regimen are significant within expected measurement precision (P< 0.05) and strongly correlated with measured response (P < 0.01). Further, we use the model to investigate, in silico, a range of (practical) alternative treatment plans to achieve the greatest possible tumor control for each individual in a subgroup of patients (N = 13). The model identifies alternative dosing strategies predicted to achieve greater tumor control compared to the standard of care for 12 of 13 patients (P < 0.01). In summary, a predictive, mechanism-based mathematical model has demonstrated the ability to identify alternative treatment regimens that are forecasted to outperform the therapeutic regimens the patients clinically. This has important implications for clinical trial design with the opportunity to alter oncology care in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助安静海莲采纳,获得10
刚刚
快乐渊思完成签到 ,获得积分10
刚刚
隐形曼青应助Jason采纳,获得10
刚刚
emet完成签到,获得积分10
1秒前
miro完成签到,获得积分10
1秒前
2秒前
2以李发布了新的文献求助10
2秒前
2秒前
本是个江湖散人完成签到,获得积分10
2秒前
3秒前
Hu完成签到,获得积分10
3秒前
3秒前
难过的尔丝完成签到,获得积分10
4秒前
4秒前
传奇3应助Ada采纳,获得10
4秒前
科研通AI6应助Tonsil01采纳,获得10
5秒前
du发布了新的文献求助10
5秒前
5秒前
要减肥香水完成签到,获得积分10
5秒前
CUI完成签到 ,获得积分10
6秒前
笨蛋土豆发布了新的文献求助10
6秒前
啦啦鱼完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
20250702完成签到 ,获得积分10
7秒前
晒太阳的乌龟完成签到,获得积分10
7秒前
7秒前
寒冷怜南完成签到,获得积分10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
fei完成签到,获得积分10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
善学以致用应助藜誌采纳,获得10
8秒前
8秒前
Meyako应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4473907
求助须知:如何正确求助?哪些是违规求助? 3932688
关于积分的说明 12201380
捐赠科研通 3587372
什么是DOI,文献DOI怎么找? 1972123
邀请新用户注册赠送积分活动 1009923
科研通“疑难数据库(出版商)”最低求助积分说明 903537