已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Three-dimensional convolutional neural network model for tree species classification using airborne hyperspectral images

高光谱成像 遥感 卷积神经网络 计算机科学 人工智能 特征(语言学) 光谱特征 模式识别(心理学) 光谱带 植被(病理学) 树(集合论) 地理 数学 数学分析 哲学 病理 医学 语言学
作者
Bin Zhang,Lin Zhao,Xiaoli Zhang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:247: 111938-111938 被引量:171
标识
DOI:10.1016/j.rse.2020.111938
摘要

Airborne hyperspectral remote sensing data with both rich spectral and spatial features can effectively improve the classification accuracy of vegetation species. However, the spectral data of hundreds of bands brings about problems such as dimensional explosion, which poses a huge challenge for hyperspectral remote sensing classification based on classical parameters models. Deep learning methods have been used for remotely sensed images classification in recent years, but the popular HSI datasets including Kennedy Space Center, Indian Pines, Pavia University scene and Salinas scene, have low spatial resolution, significant differences between categories, and regular boundaries. When applied to the classification of forestry tree species, the accuracy often decreases because the spectral response of different plants of the same family and genus are very similar, especially under the fragmented species distribution, complex topography and the occluded canopy. So we collect new data sets, selected Gaofeng State Owned Forest Farm in Guangxi province in south China as the research area and adopted the airborne hyperspectral data obtained by the LiCHy system of the Chinese Academy of Forestry to explore an improved three-dimensional convolutional neural network(3D-CNN) model for tree species classification. The proposed model uses raw data as input without dimension reduction or feature screening, and simultaneously extracts spectral and spatial features. After the 3D convolutional layer, the captured high-level semantic concept is a joint spatial spectral feature representation, so we can turn it into a one-dimensional feature as a new input to learn a more abstract level of expression. The widely used earlystop method is also used to prevent overfitting. The proposed model is a lightweight, generalized, and fast convergence classification model, by which the short-time and large-area of multiple tree species classification with high-precision can be realized. The result shows that the 3D-1D CNN model can shorten the training time of the 3D CNN model by 60% and achieve a classification accuracy of 93.14% within 50 ha in 6.37 min, which provides a basis for the classification of tree species, the mapping of forest form and the inventory of forest resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
roselau完成签到,获得积分10
4秒前
科目三应助夏天的西瓜采纳,获得10
4秒前
6秒前
小娄娄娄发布了新的文献求助10
12秒前
田様应助Lee采纳,获得10
13秒前
Lucas应助Rjy采纳,获得10
14秒前
丘比特应助sniper111采纳,获得10
14秒前
无奈皮卡丘完成签到 ,获得积分10
16秒前
17秒前
科研通AI5应助dildil采纳,获得10
19秒前
22秒前
温暖凡灵完成签到,获得积分10
23秒前
24秒前
chengmin发布了新的文献求助10
25秒前
VAE发布了新的文献求助30
26秒前
zhao完成签到 ,获得积分10
28秒前
sun完成签到 ,获得积分10
29秒前
35秒前
李爱国应助无语采纳,获得10
38秒前
yang应助傲娇初阳采纳,获得10
38秒前
zeyin完成签到,获得积分10
38秒前
40秒前
顾矜应助chengmin采纳,获得10
41秒前
小黎快看完成签到 ,获得积分10
41秒前
44秒前
Lucas应助论文写到头秃采纳,获得10
46秒前
46秒前
草木发布了新的文献求助10
48秒前
50秒前
50秒前
JianminLuo发布了新的文献求助10
51秒前
隐形曼青应助烟尘采纳,获得10
52秒前
53秒前
Lee发布了新的文献求助10
54秒前
ZZzz完成签到,获得积分10
55秒前
李昕123发布了新的文献求助10
55秒前
科研通AI5应助笨笨的采纳,获得10
58秒前
江湖小妖完成签到,获得积分10
58秒前
MOF完成签到 ,获得积分10
58秒前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782508
求助须知:如何正确求助?哪些是违规求助? 3327943
关于积分的说明 10233888
捐赠科研通 3042909
什么是DOI,文献DOI怎么找? 1670329
邀请新用户注册赠送积分活动 799680
科研通“疑难数据库(出版商)”最低求助积分说明 758915