MDIPA: a microRNA–drug interaction prediction approach based on non-negative matrix factorization

计算机科学 小RNA 相似性(几何) 计算生物学 矩阵分解 鉴定(生物学) 数据挖掘 人工智能 机器学习 生物 基因 遗传学 图像(数学) 物理 量子力学 植物 特征向量
作者
Ali Akbar Jamali,Anthony Kusalik,Fang‐Xiang Wu
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:36 (20): 5061-5067 被引量:20
标识
DOI:10.1093/bioinformatics/btaa577
摘要

Abstract Motivation Evidence has shown that microRNAs, one type of small biomolecule, regulate the expression level of genes and play an important role in the development or treatment of diseases. Drugs, as important chemical compounds, can interact with microRNAs and change their functions. The experimental identification of microRNA–drug interactions is time-consuming and expensive. Therefore, it is appealing to develop effective computational approaches for predicting microRNA–drug interactions. Results In this study, a matrix factorization-based method, called the microRNA–drug interaction prediction approach (MDIPA), is proposed for predicting unknown interactions among microRNAs and drugs. Specifically, MDIPA utilizes experimentally validated interactions between drugs and microRNAs, drug similarity and microRNA similarity to predict undiscovered interactions. A path-based microRNA similarity matrix is constructed, while the structural information of drugs is used to establish a drug similarity matrix. To evaluate its performance, our MDIPA is compared with four state-of-the-art prediction methods with an independent dataset and cross-validation. The results of both evaluation methods confirm the superior performance of MDIPA over other methods. Finally, the results of molecular docking in a case study with breast cancer confirm the efficacy of our approach. In conclusion, MDIPA can be effective in predicting potential microRNA–drug interactions. Availability and implementation All code and data are freely available from https://github.com/AliJam82/MDIPA. Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gxmu6322发布了新的文献求助10
1秒前
lr完成签到 ,获得积分10
2秒前
情怀应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
跳跃的白云完成签到 ,获得积分10
4秒前
梅特卡夫完成签到,获得积分10
6秒前
wuda完成签到,获得积分10
6秒前
ambrose37完成签到 ,获得积分10
7秒前
阿尔治完成签到,获得积分10
7秒前
7秒前
gxmu6322完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
Prof_W完成签到 ,获得积分10
13秒前
14秒前
linjiatai完成签到,获得积分10
16秒前
LV完成签到 ,获得积分10
16秒前
17秒前
葡紫明完成签到 ,获得积分10
17秒前
雨后完成签到 ,获得积分10
19秒前
无限的含羞草完成签到,获得积分10
19秒前
20秒前
www完成签到 ,获得积分10
20秒前
岩崖完成签到,获得积分20
22秒前
23秒前
小吴要努力科研完成签到 ,获得积分10
24秒前
vivelejrlee完成签到,获得积分10
25秒前
踏实谷蓝完成签到 ,获得积分10
25秒前
28秒前
28秒前
研友_VZG7GZ应助alooof采纳,获得10
31秒前
不安的听寒完成签到 ,获得积分10
33秒前
35秒前
小潘完成签到 ,获得积分10
36秒前
量子星尘发布了新的文献求助10
38秒前
celia完成签到 ,获得积分10
40秒前
40秒前
辛勤谷雪完成签到,获得积分0
41秒前
LFY完成签到 ,获得积分10
42秒前
Mercury完成签到,获得积分10
44秒前
haokeyan完成签到,获得积分10
45秒前
高分求助中
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4236520
求助须知:如何正确求助?哪些是违规求助? 3770183
关于积分的说明 11841026
捐赠科研通 3426808
什么是DOI,文献DOI怎么找? 1880714
邀请新用户注册赠送积分活动 933251
科研通“疑难数据库(出版商)”最低求助积分说明 840148