亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FFT-based deep feature learning method for EEG classification

计算机科学 快速傅里叶变换 模式识别(心理学) 人工智能 脑电图 深度学习 特征(语言学) 语音识别 机器学习 心理学 算法 神经科学 语言学 哲学
作者
Mingyang Li,Wanzhong Chen
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:66: 102492-102492 被引量:67
标识
DOI:10.1016/j.bspc.2021.102492
摘要

Abstract This study introduces a new method for electroencephalogram (EEG) signal classification based on deep learning model, by which relevant features are automatically learned in a supervised learning framework. The fast Fourier transform (FFT) has been applied in a novel way to generate the EEG matrix. And a PCA neural network (PCANet) is designed to learn the hidden information from the frequency matrix of EEG signals. And these deep features are then given as inputs to train a support vector machine (SVM) for recognition of epileptic seizures. The experiments are carried out with two authoritative databases provided by the Bonn University (Database A) and Children’s Hospital in Boston (Database B), relatively. Additionally, we have evaluated the influence of all parameters for the proposed scheme to obtain the optimal model with better generalization and expansibility. The proposed feature learning method concerned in this work is proved very useful to distinguish seizure events from both short and long EEG recordings. Experimental results obtained by analyzing Database A are not less than 99% accuracy in seven problems. The effectiveness is also verified on Database B with an average accuracy of 98.47% across 23 patients. Our FFT-based PCANet not only achieves the satisfied results, but also exhibits better stability across different classification cases or patients, which indicates the worth in practical applications for diagnostic reference in clinics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
嘻嘻哈哈应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
嘻嘻哈哈应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
无极微光应助CC采纳,获得20
12秒前
15秒前
23秒前
27秒前
OSASACB完成签到 ,获得积分10
32秒前
科研通AI6应助甜美的寻凝采纳,获得10
41秒前
49秒前
1分钟前
1分钟前
1分钟前
1分钟前
魏欣娜发布了新的文献求助10
1分钟前
anling发布了新的文献求助10
1分钟前
CipherSage应助魏欣娜采纳,获得10
1分钟前
1分钟前
anling完成签到,获得积分10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
2分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
2分钟前
CC发布了新的文献求助20
2分钟前
2分钟前
俭朴蜜蜂完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
夏日完成签到 ,获得积分10
3分钟前
魏欣娜发布了新的文献求助10
3分钟前
3分钟前
3分钟前
符寄云发布了新的文献求助10
3分钟前
3分钟前
3分钟前
jeff完成签到,获得积分10
3分钟前
CC发布了新的文献求助20
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482368
求助须知:如何正确求助?哪些是违规求助? 4583217
关于积分的说明 14388979
捐赠科研通 4512258
什么是DOI,文献DOI怎么找? 2472792
邀请新用户注册赠送积分活动 1459036
关于科研通互助平台的介绍 1432510