清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Lymph Node Metastasis Prediction from Primary Breast Cancer US Images Using Deep Learning

医学 接收机工作特性 卷积神经网络 乳腺癌 置信区间 淋巴结 放射科 腋窝淋巴结 试验装置 转移 人工智能 深度学习 数据集 癌症 内科学 计算机科学
作者
Liqiang Zhou,Xinglong Wu,Shuyan Huang,Ge-Ge Wu,Hua-Rong Ye,Qi Wei,Lingyun Bao,Youbin Deng,Xingrui Li,Xin‐Wu Cui,Christoph F. Dietrich
出处
期刊:Radiology [Radiological Society of North America]
卷期号:294 (1): 19-28 被引量:364
标识
DOI:10.1148/radiol.2019190372
摘要

Background Deep learning (DL) algorithms are gaining extensive attention for their excellent performance in image recognition tasks. DL models can automatically make a quantitative assessment of complex medical image characteristics and achieve increased accuracy in diagnosis with higher efficiency. Purpose To determine the feasibility of using a DL approach to predict clinically negative axillary lymph node metastasis from US images in patients with primary breast cancer. Materials and Methods A data set of US images in patients with primary breast cancer with clinically negative axillary lymph nodes from Tongji Hospital (974 imaging studies from 2016 to 2018, 756 patients) and an independent test set from Hubei Cancer Hospital (81 imaging studies from 2018 to 2019, 78 patients) were collected. Axillary lymph node status was confirmed with pathologic examination. Three different convolutional neural networks (CNNs) of Inception V3, Inception-ResNet V2, and ResNet-101 architectures were trained on 90% of the Tongji Hospital data set and tested on the remaining 10%, as well as on the independent test set. The performance of the models was compared with that of five radiologists. The models' performance was analyzed in terms of accuracy, sensitivity, specificity, receiver operating characteristic curves, areas under the receiver operating characteristic curve (AUCs), and heat maps. Results The best-performing CNN model, Inception V3, achieved an AUC of 0.89 (95% confidence interval [CI]: 0.83, 0.95) in the prediction of the final clinical diagnosis of axillary lymph node metastasis in the independent test set. The model achieved 85% sensitivity (35 of 41 images; 95% CI: 70%, 94%) and 73% specificity (29 of 40 images; 95% CI: 56%, 85%), and the radiologists achieved 73% sensitivity (30 of 41 images; 95% CI: 57%, 85%; P = .17) and 63% specificity (25 of 40 images; 95% CI: 46%, 77%; P = .34). Conclusion Using US images from patients with primary breast cancer, deep learning models can effectively predict clinically negative axillary lymph node metastasis. Artificial intelligence may provide an early diagnostic strategy for lymph node metastasis in patients with breast cancer with clinically negative lymph nodes. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Bae in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vbnn完成签到 ,获得积分10
6秒前
42秒前
Yuki完成签到 ,获得积分10
43秒前
poki完成签到 ,获得积分10
55秒前
58秒前
善学以致用应助紫色奶萨采纳,获得10
1分钟前
1分钟前
1分钟前
紫色奶萨发布了新的文献求助10
1分钟前
紫色奶萨完成签到,获得积分10
1分钟前
2分钟前
2分钟前
小居发布了新的文献求助10
2分钟前
万能图书馆应助吕懿采纳,获得10
2分钟前
gengsumin完成签到,获得积分10
2分钟前
小居完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
yaoli0823发布了新的文献求助10
3分钟前
yaoli0823完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
深情安青应助Wenqi采纳,获得10
4分钟前
隐形曼青应助天玄采纳,获得10
4分钟前
4分钟前
5分钟前
方白秋完成签到,获得积分0
5分钟前
5分钟前
Ava应助天玄采纳,获得10
5分钟前
5分钟前
Funnymudpee发布了新的文献求助10
5分钟前
咯咯咯完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482504
求助须知:如何正确求助?哪些是违规求助? 4583288
关于积分的说明 14389153
捐赠科研通 4512419
什么是DOI,文献DOI怎么找? 2472939
邀请新用户注册赠送积分活动 1459144
关于科研通互助平台的介绍 1432624