亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Simple Framework for Contrastive Learning of Visual Representations

计算机科学 人工智能 分类器(UML) 机器学习 匹配(统计) 特征学习 监督学习 代表(政治) 转化(遗传学) 自然语言处理 模式识别(心理学) 人工神经网络 数学 基因 统计 政治 生物化学 化学 法学 政治学
作者
Ting Chen,Simon Kornblith,Mohammad Norouzi,Geoffrey E. Hinton
出处
期刊:Cornell University - arXiv 被引量:6161
标识
DOI:10.48550/arxiv.2002.05709
摘要

This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kevin完成签到,获得积分10
刚刚
刘刘完成签到 ,获得积分10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
28秒前
48秒前
开朗山水完成签到 ,获得积分10
48秒前
nenoaowu发布了新的文献求助30
54秒前
1分钟前
彭于晏应助聪明含桃采纳,获得10
1分钟前
zxt完成签到,获得积分10
1分钟前
ljl86400完成签到,获得积分10
1分钟前
zxt关闭了zxt文献求助
1分钟前
John完成签到,获得积分10
2分钟前
zxt发布了新的文献求助10
2分钟前
小二郎应助Demi_Ming采纳,获得10
3分钟前
杭州007完成签到 ,获得积分10
3分钟前
打打应助耍酷含羞草采纳,获得10
3分钟前
3分钟前
skittles发布了新的文献求助10
3分钟前
科研通AI5应助zxt采纳,获得10
3分钟前
3分钟前
3分钟前
taster发布了新的文献求助10
4分钟前
4分钟前
skittles完成签到,获得积分10
4分钟前
bbwz123456完成签到,获得积分10
4分钟前
nenoaowu发布了新的文献求助30
4分钟前
taster完成签到,获得积分10
4分钟前
zxt发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
kingcoffee完成签到 ,获得积分10
4分钟前
烟消云散完成签到,获得积分10
5分钟前
5分钟前
拓跋从阳发布了新的文献求助10
5分钟前
拓跋从阳完成签到,获得积分10
5分钟前
5分钟前
聪明含桃完成签到,获得积分10
5分钟前
5分钟前
6分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 840
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Nanosuspensions 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4190522
求助须知:如何正确求助?哪些是违规求助? 3726501
关于积分的说明 11738670
捐赠科研通 3402687
什么是DOI,文献DOI怎么找? 1867105
邀请新用户注册赠送积分活动 923785
科研通“疑难数据库(出版商)”最低求助积分说明 834812