Machine learning to predict early recurrence after oesophageal cancer surgery

医学 食管切除术 接收机工作特性 新辅助治疗 癌症 外科 食管癌 机器学习 人工智能 内科学 乳腺癌 计算机科学
作者
Saqib Rahman,Robert Walker,Megan Lloyd,Leena Grace Beslin,G.I. van Boxel,B. Feike Kingma,Jelle P. Ruurda,Richard van Hillegersberg,Scott Harris,Simon L. Parsons,S Mercer,Ewen A. Griffiths,J. Robert O’Neill,Richard Turkington,Rebecca C. Fitzgerald,Tim Underwood,Ayesha Noorani,Rachael Fels Elliott,Paul A. Edwards,Nicola Grehan
出处
期刊:British Journal of Surgery [Oxford University Press]
卷期号:107 (8): 1042-1052 被引量:43
标识
DOI:10.1002/bjs.11461
摘要

Abstract Background Early cancer recurrence after oesophagectomy is a common problem, with an incidence of 20–30 per cent despite the widespread use of neoadjuvant treatment. Quantification of this risk is difficult and existing models perform poorly. This study aimed to develop a predictive model for early recurrence after surgery for oesophageal adenocarcinoma using a large multinational cohort and machine learning approaches. Methods Consecutive patients who underwent oesophagectomy for adenocarcinoma and had neoadjuvant treatment in one Dutch and six UK oesophagogastric units were analysed. Using clinical characteristics and postoperative histopathology, models were generated using elastic net regression (ELR) and the machine learning methods random forest (RF) and extreme gradient boosting (XGB). Finally, a combined (ensemble) model of these was generated. The relative importance of factors to outcome was calculated as a percentage contribution to the model. Results A total of 812 patients were included. The recurrence rate at less than 1 year was 29·1 per cent. All of the models demonstrated good discrimination. Internally validated areas under the receiver operating characteristic (ROC) curve (AUCs) were similar, with the ensemble model performing best (AUC 0·791 for ELR, 0·801 for RF, 0·804 for XGB, 0·805 for ensemble). Performance was similar when internal–external validation was used (validation across sites, AUC 0·804 for ensemble). In the final model, the most important variables were number of positive lymph nodes (25·7 per cent) and lymphovascular invasion (16·9 per cent). Conclusion The model derived using machine learning approaches and an international data set provided excellent performance in quantifying the risk of early recurrence after surgery, and will be useful in prognostication for clinicians and patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
libaoqi完成签到,获得积分10
1秒前
1秒前
2秒前
genius发布了新的文献求助20
2秒前
dadada发布了新的文献求助10
2秒前
3秒前
Jasper应助Zelytnn.Lo采纳,获得10
4秒前
顺利毕业发布了新的文献求助30
4秒前
隐形曼青应助妖孽宇采纳,获得10
4秒前
5秒前
慕青应助xiaoyi采纳,获得10
5秒前
5秒前
纯真问寒完成签到,获得积分10
6秒前
6秒前
wyy发布了新的文献求助10
6秒前
修仙中应助Edward采纳,获得10
6秒前
Yuan发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
fengpu应助科研通管家采纳,获得20
8秒前
Dallas应助科研通管家采纳,获得20
8秒前
李健应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
Superman完成签到,获得积分10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
orixero应助Ann采纳,获得10
9秒前
10秒前
ZYao65发布了新的文献求助10
10秒前
加油干发布了新的文献求助10
10秒前
10秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4139497
求助须知:如何正确求助?哪些是违规求助? 3676545
关于积分的说明 11621066
捐赠科研通 3370614
什么是DOI,文献DOI怎么找? 1851454
邀请新用户注册赠送积分活动 914603
科研通“疑难数据库(出版商)”最低求助积分说明 829377