针铁矿
纳米-
化学工程
离子交换树脂
化学
表面改性
离子交换
材料科学
无机化学
离子
有机化学
吸附
工程类
作者
Siqiao Wang,Weizhao Yin,Huaitian Bu,Weilong Zeng,Ping Li,Xiangyu Zheng,Pen‐Chi Chiang,Jinhua Wu
标识
DOI:10.1080/09593330.2020.1855257
摘要
A novel macroporous strong acidic cation exchange resin (D001) modified by nano-sized goethite (nFeOOH@D001) was fabricated by using a facile ethanol dispersion and impregnation method, and its efficiency for Cr(VI) removal was tested thereafter. Due to the dispersing effect of ethanol, FeOOH particles of 20–150 nm were coated on the D001 surfaces. The nFeOOH@D001 obtained a Cr(VI) removal efficiency and capacity of 80.2% and 7.4 mg/g respectively, 5 times and 8 times higher than that of the pristine D001. The Cr(VI) removal by nFeOOH@D001 followed the pseudo second-order kinetics and the Langmuir adsorption model. Column experiments also demonstrated that the nFeOOH@D001 exhibited a much better ability to remove Cr(VI) as compared to the D001. Additionally, the nFeOOH@D001 showed a potential for reusability and renewability. The adsorbed nFeOOH@D001 could be easily desorbed by 0.1 M acetic acid and a reuse efficiency of 92.7% could be maintained after 4 desorption–adsorption cycles. The used nFeOOH@D001 could be eluted by 0.1 M HCl to remove nFeOOH, and the renewed D001 could be recoated by nFeOOH and achieved a regeneration rate of 97.8% for Cr(VI) removal. The above results indicated that nano-sized goethite modification is a promising method to endow D001 with the ability to remove Cr(VI) from water.
科研通智能强力驱动
Strongly Powered by AbleSci AI