Relation-Aware Shared Representation Learning for Cancer Prognosis Analysis With Auxiliary Clinical Variables and Incomplete Multi-Modality Data

过度拟合 计算机科学 判别式 特征(语言学) 模式 人工智能 关系(数据库) 特征学习 机器学习 模态(人机交互) 数据挖掘 代表(政治) 人工神经网络 政治 政治学 哲学 社会学 法学 语言学 社会科学
作者
Zhenyuan Ning,Denghui Du,Chao Tu,Qianjin Feng,Yu Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (1): 186-198 被引量:18
标识
DOI:10.1109/tmi.2021.3108802
摘要

The integrative analysis of complementary phenotype information contained in multi-modality data (e.g., histopathological images and genomic data) has advanced the prognostic evaluation of cancers. However, multi-modality based prognosis analysis confronts two challenges: (1) how to explore underlying relations inherent in different modalities data for learning compact and discriminative multi-modality representations; (2) how to take full consideration of incomplete multi-modality data for constructing accurate and robust prognostic model, since a host of complete multi-modality data are not always available. Additionally, many existing multi-modality based prognostic methods commonly ignore relevant clinical variables (e.g., grade and stage), which, however, may provide supplemental information to promote the performance of model. In this paper, we propose a relation-aware shared representation learning method for prognosis analysis of cancers, which makes full use of clinical information and incomplete multi-modality data. The proposed method learns multi-modal shared space tailored for prognostic model via a dual mapping. Within the shared space, it equips with relational regularizers to explore the potential relations (i.e., feature-label and feature-feature relations) among multi-modality data for inducing discriminatory representations and simultaneously obtaining extra sparsity for alleviating overfitting. Moreover, it regresses and incorporates multiple auxiliary clinical attributes with dynamic coefficients to meliorate performance. Furthermore, in training stage, a partial mapping strategy is employed to extend and train a more reliable model with incomplete multi-modality data. We have evaluated our method on three public datasets derived from The Cancer Genome Atlas (TCGA) project, and the experimental results demonstrate the superior performance of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苗条映菱完成签到,获得积分10
刚刚
响铃发布了新的文献求助10
1秒前
文文发布了新的文献求助30
2秒前
顾矜应助Zzong采纳,获得10
2秒前
3秒前
striver0112发布了新的文献求助10
3秒前
完美世界应助咕咕唧唧采纳,获得10
3秒前
田様应助鲸落采纳,获得10
3秒前
十五发布了新的文献求助10
3秒前
科研通AI5应助二指弹采纳,获得10
4秒前
4秒前
大模型应助琪琪子采纳,获得10
4秒前
nanda完成签到,获得积分0
4秒前
欢喜可愁给欢喜可愁的求助进行了留言
5秒前
6秒前
张张爱科研完成签到,获得积分10
6秒前
情怀应助MOMO采纳,获得10
6秒前
6秒前
6秒前
今后应助鳗鱼绿蝶采纳,获得10
6秒前
青檀完成签到,获得积分10
7秒前
无花果应助Yana1311采纳,获得10
7秒前
7秒前
8秒前
传奇3应助xxxxx采纳,获得10
8秒前
8秒前
我是老大应助furina采纳,获得10
8秒前
8秒前
9秒前
顺利的白昼完成签到,获得积分20
9秒前
saily完成签到,获得积分10
9秒前
10秒前
BINGBING发布了新的文献求助10
10秒前
11秒前
逍遥发布了新的文献求助10
11秒前
桓某人发布了新的文献求助10
11秒前
咕咕唧唧完成签到,获得积分10
11秒前
FashionBoy应助李伟采纳,获得10
12秒前
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834587
求助须知:如何正确求助?哪些是违规求助? 3377081
关于积分的说明 10496404
捐赠科研通 3096557
什么是DOI,文献DOI怎么找? 1705041
邀请新用户注册赠送积分活动 820414
科研通“疑难数据库(出版商)”最低求助积分说明 772031