A deep learning model for detection and tracking in high-throughput images of organoid

类有机物 计算机科学 深度学习 帧速率 人工智能 跟踪(教育) 帧(网络) 计算机视觉 生物 神经科学 心理学 教育学 电信
作者
Xuesheng Bian,Gang Li,Cheng Wang,Weiquan Liu,Xiuhong Lin,Zexin Chen,Mancheung Cheung,Xiongbiao Luo
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:134: 104490-104490 被引量:43
标识
DOI:10.1016/j.compbiomed.2021.104490
摘要

Organoid, an in vitro 3D culture, has extremely high similarity with its source organ or tissue, which creates a model in vitro that simulates the in vivo environment. Organoids have been extensively studied in cell biology, precision medicine, drug toxicity, efficacy tests, etc., which have been proven to have high research value. Periodic observation of organoids in microscopic images to obtain morphological or growth characteristics is essential for organoid research. It is difficult and time-consuming to perform manual screens for organoids, but there is no better solution in the prior art. In this paper, we established the first high-throughput organoid image dataset for organoids detection and tracking, which experienced experts annotate in detail. Moreover, we propose a novel deep neural network (DNN) that effectively detects organoids and dynamically tracks them throughout the entire culture. We divided our solution into two steps: First, the high-throughput sequential images are processed frame by frame to detect all organoids; Second, the similarities of the organoids in the adjacent frames are computed, and the organoids on the adjacent frames are matched in pairs. With the help of our proposed dataset, our model achieves organoids detection and tracking with fast speed and high accuracy, effectively reducing the burden on researchers. To our knowledge, this is the first exploration of applying deep learning to organoid tracking tasks. Experiments have demonstrated that our proposed method achieved satisfactory results on organoid detection and tracking, verifying the great potential of deep learning technology in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bin_Liu发布了新的文献求助10
刚刚
菠萝谷波完成签到,获得积分10
4秒前
深情安青应助岁月轮回采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
吴大打应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
米田共完成签到,获得积分10
7秒前
玲儿完成签到,获得积分10
8秒前
8秒前
Ava应助19854173750采纳,获得10
9秒前
10秒前
和谐冰菱完成签到,获得积分10
11秒前
11秒前
Oracle应助GeoEye采纳,获得30
13秒前
和谐冰菱发布了新的文献求助10
13秒前
刘辰完成签到 ,获得积分10
14秒前
阿rain完成签到,获得积分10
15秒前
fffan发布了新的文献求助10
16秒前
17秒前
鱼吧啦拉巴巴完成签到,获得积分20
17秒前
18秒前
18秒前
18秒前
粉红大叔发布了新的文献求助10
22秒前
caohuijun发布了新的文献求助10
22秒前
23秒前
19854173750发布了新的文献求助10
23秒前
吴大打完成签到,获得积分10
25秒前
bubble完成签到 ,获得积分10
27秒前
27秒前
轩轩轩轩完成签到 ,获得积分10
30秒前
年年发布了新的文献求助20
30秒前
科研通AI5应助知道采纳,获得30
31秒前
星辰大海应助caohuijun采纳,获得10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780028
求助须知:如何正确求助?哪些是违规求助? 3325388
关于积分的说明 10222846
捐赠科研通 3040559
什么是DOI,文献DOI怎么找? 1668897
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758612