On the Opportunities and Risks of Foundation Models

软件部署 计算机科学 杠杆(统计) 人工智能 基础(证据) 社会技术系统 数据科学 深度学习 工程伦理学 管理科学 政治学 工程类 法学 操作系统
作者
Rishi Bommasani,Drew A. Hudson,Ehsan Adeli,Russ B. Altman,Simran Arora,Sydney von Arx,Michael S. Bernstein,Jeannette Bohg,Antoine Bosselut,Emma Brunskill,Erik Brynjolfsson,Shyamal Buch,Dallas Card,Rodrigo Castellon,Niladri S. Chatterji,Annie Chen,Kathleen Creel,Jared Quincy Davis,Dorottya Demszky,Chris Donahue
出处
期刊:Cornell University - arXiv 被引量:1553
标识
DOI:10.48550/arxiv.2108.07258
摘要

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
elysia完成签到,获得积分10
1秒前
zho发布了新的文献求助10
1秒前
2秒前
天真的青发布了新的文献求助30
2秒前
Alex发布了新的文献求助10
2秒前
隐形曼青应助zhang采纳,获得10
3秒前
3秒前
FashionBoy应助Ck采纳,获得10
3秒前
酷酷的库库给酷酷的库库的求助进行了留言
4秒前
4秒前
辛勤的大雁完成签到,获得积分10
4秒前
小硕土川发布了新的文献求助30
6秒前
Hello应助Serena采纳,获得10
6秒前
随机昵称发布了新的文献求助10
6秒前
析界成微发布了新的文献求助30
6秒前
6秒前
badyoungboy完成签到,获得积分10
7秒前
ShawnLyu应助活泼的觅云采纳,获得10
8秒前
田様应助dilli采纳,获得10
10秒前
10秒前
完美世界应助errui采纳,获得10
10秒前
顺心道之完成签到,获得积分10
10秒前
科研通AI2S应助动听天问采纳,获得10
10秒前
CWNU_HAN应助不会打架的熊采纳,获得30
10秒前
yzy发布了新的文献求助10
11秒前
13秒前
lindalin发布了新的文献求助10
14秒前
烟花应助KerwinLLL采纳,获得10
14秒前
fengmian发布了新的文献求助10
14秒前
不可思宇完成签到,获得积分10
14秒前
团团完成签到,获得积分10
15秒前
充电宝应助vicar采纳,获得30
15秒前
16秒前
思源应助zxtwins采纳,获得10
17秒前
Ck发布了新的文献求助10
17秒前
17秒前
Keira_Chang完成签到,获得积分10
17秒前
科研通AI5应助ltutui7采纳,获得10
17秒前
华仔应助开心饼干采纳,获得30
18秒前
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800001
求助须知:如何正确求助?哪些是违规求助? 3345347
关于积分的说明 10324720
捐赠科研通 3061849
什么是DOI,文献DOI怎么找? 1680569
邀请新用户注册赠送积分活动 807139
科研通“疑难数据库(出版商)”最低求助积分说明 763502