Deep learning-based autofocus method enhances image quality in light-sheet fluorescence microscopy

自动对焦 薄层荧光显微镜 光学 镜头(地质) 显微镜 基点 图像质量 计算机科学 人工智能 计算机视觉 图像分辨率 光学(聚焦) 物理 图像(数学) 扫描共焦电子显微镜
作者
Chen Li,Adele Moatti,Xuying Zhang,H. Troy Ghashghaei,Alon Greenbaum
出处
期刊:Biomedical Optics Express [Optica Publishing Group]
卷期号:12 (8): 5214-5214 被引量:44
标识
DOI:10.1364/boe.427099
摘要

Light-sheet fluorescence microscopy (LSFM) is a minimally invasive and high throughput imaging technique ideal for capturing large volumes of tissue with sub-cellular resolution. A fundamental requirement for LSFM is a seamless overlap of the light-sheet that excites a selective plane in the specimen, with the focal plane of the objective lens. However, spatial heterogeneity in the refractive index of the specimen often results in violation of this requirement when imaging deep in the tissue. To address this issue, autofocus methods are commonly used to refocus the focal plane of the objective-lens on the light-sheet. Yet, autofocus techniques are slow since they require capturing a stack of images and tend to fail in the presence of spherical aberrations that dominate volume imaging. To address these issues, we present a deep learning-based autofocus framework that can estimate the position of the objective-lens focal plane relative to the light-sheet, based on two defocused images. This approach outperforms or provides comparable results with the best traditional autofocus method on small and large image patches respectively. When the trained network is integrated with a custom-built LSFM, a certainty measure is used to further refine the network's prediction. The network performance is demonstrated in real-time on cleared genetically labeled mouse forebrain and pig cochleae samples. Our study provides a framework that could improve light-sheet microscopy and its application toward imaging large 3D specimens with high spatial resolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观帅哥完成签到,获得积分10
1秒前
1秒前
12gf3发布了新的文献求助10
4秒前
田様应助isle采纳,获得10
5秒前
波比大王发布了新的文献求助10
7秒前
卷毛完成签到,获得积分10
8秒前
jim发布了新的文献求助10
8秒前
脑洞疼应助shinn采纳,获得10
10秒前
大模型应助林士萍采纳,获得10
11秒前
酷酷炫饭完成签到,获得积分10
11秒前
12秒前
NexusExplorer应助了该采纳,获得10
13秒前
JIN发布了新的文献求助10
14秒前
超帅连虎应助比巴卜采纳,获得10
14秒前
汉堡包应助比巴卜采纳,获得10
14秒前
maidida完成签到,获得积分10
15秒前
tao发布了新的文献求助10
17秒前
17秒前
18秒前
19秒前
asdfqwer发布了新的文献求助10
20秒前
orixero应助shinn采纳,获得10
20秒前
20秒前
20秒前
高等游民发布了新的文献求助10
21秒前
六七七发布了新的文献求助10
22秒前
22秒前
白白白完成签到,获得积分20
22秒前
23秒前
isle完成签到 ,获得积分20
23秒前
Hello应助科研通管家采纳,获得10
23秒前
李健应助科研通管家采纳,获得10
23秒前
情怀应助科研通管家采纳,获得10
24秒前
wanci应助科研通管家采纳,获得20
24秒前
打打应助科研通管家采纳,获得10
24秒前
慕青应助科研通管家采纳,获得10
24秒前
丘比特应助科研通管家采纳,获得10
24秒前
丘比特应助科研通管家采纳,获得10
24秒前
完美世界应助科研通管家采纳,获得10
24秒前
大个应助科研通管家采纳,获得10
24秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4154347
求助须知:如何正确求助?哪些是违规求助? 3690172
关于积分的说明 11656838
捐赠科研通 3382352
什么是DOI,文献DOI怎么找? 1856097
邀请新用户注册赠送积分活动 917672
科研通“疑难数据库(出版商)”最低求助积分说明 831094