Enhanced electrical properties of Li-salts doped mesoporous TiO2 in perovskite solar cells

兴奋剂 材料科学 钙钛矿(结构) 介孔材料 化学工程 光电子学 纳米技术 化学 工程类 有机化学 催化作用
作者
Minjin Kim,In Woo Choi,Sung-Ja Choi,Jang Ho Song,Sung-In Mo,Jeong-Ho An,Yimhyun Jo,SeJin Ahn,Seoung Kyu Ahn,Gi-Hwan Kim,Dong Suk Kim
出处
期刊:Joule [Elsevier]
卷期号:5 (3): 659-672 被引量:99
标识
DOI:10.1016/j.joule.2021.02.007
摘要

•Systemic study of counter anions (TFSI−, CO32−, Cl−, and F−) with Li-salts•High optical and electrical properties with Li2CO3-doped TiO2•Strong chemical bonding with Li2CO3-doped TiO2 for a deep conduction band•Achieved over 25% PCE with Li2CO3-doped TiO2 Perovskite solar cells (PSCs) are promising photovoltaic technology products because of the rapid growth of their performance and a power conversion efficiency (PCE) of up to 25% . The high efficiency of PSCs mainly comes from the perovskite itself and also from its transport layer ability. The TiO2 material is one of the best ETL materials, which has a high charge mobility and a moderate band energy level. However, the ultimate PSCs efficiency—over 25% PSCs needs a higher property of ETL. One of the strategies to improve the characteristics of TiO2 is doping with various dopants. In this research, the effect of counter anions (TFSI−, CO32−, Cl−, and F−) with Li-salts doping in the TiO2 was systemically studied and characterized electrical and optical for achieving over 25% PCE. Li2CO3-doped TiO2 showed excellent electrical and optical properties, which directly connected to high PCE PSCs of over 25%. This doping property can open the ultimate PCE of PSCs field and be widely applied to various purposes and applications. The charge transferability of the electron transfer layers (ETLs) is important for achieving high performance in mesoscopic (mp) perovskite solar cells (PSCs). However, because of the low electron extraction efficiency of TiO2, lithium doping is essentially required. In this work, we compared the electrical properties of mp-TiO2 doped with Li-salts with different anions—LiTFSI, Li2CO3, LiCl, and LiF. Interestingly, we found that the anions of the Li-salt dopants affect the electrical properties of the ETLs and the solar cell performance. The Li2CO3 doping of mp-TiO2 led to conduction bands deeper than those of pristine mp-TiO2 or other doped mp-TiO2. The maximum efficiency of 25.28% and certified efficiency of 24.68% (Newport) was obtained by using Li2CO3 dopant. This optimization of the ETLs properties is expected to greatly contribute to the progress of PSCs by leading to further increases in their efficiency. The charge transferability of the electron transfer layers (ETLs) is important for achieving high performance in mesoscopic (mp) perovskite solar cells (PSCs). However, because of the low electron extraction efficiency of TiO2, lithium doping is essentially required. In this work, we compared the electrical properties of mp-TiO2 doped with Li-salts with different anions—LiTFSI, Li2CO3, LiCl, and LiF. Interestingly, we found that the anions of the Li-salt dopants affect the electrical properties of the ETLs and the solar cell performance. The Li2CO3 doping of mp-TiO2 led to conduction bands deeper than those of pristine mp-TiO2 or other doped mp-TiO2. The maximum efficiency of 25.28% and certified efficiency of 24.68% (Newport) was obtained by using Li2CO3 dopant. This optimization of the ETLs properties is expected to greatly contribute to the progress of PSCs by leading to further increases in their efficiency. Perovskite solar cells (PSCs) are one of the most promising photovoltaic technology products because of their outstanding properties, which include high absorption coefficiencies,1Hao F. Stoumpos C.C. Cao D.H. Chang R.P.H. Kanatzidis M.G. Lead-free solid-state organic–inorganic halide perovskite solar cells.Nat. Photonics. 2014; 8: 489-494Crossref Scopus (1878) Google Scholar excellent carrier transport characteristics with long electron and hole diffusion lengths,2Lee M.M. Teuscher J. Miyasaka T. Murakami T.N. Snaith H.J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites.Science. 2012; 338: 643-647Crossref PubMed Scopus (7764) Google Scholar, 3Stranks S.D. Eperon G.E. Grancini G. Menelaou C. Alcocer M.J.P. Leijtens T. Herz L.M. Petrozza A. Snaith H.J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.Science. 2013; 342: 341-344Crossref PubMed Scopus (7017) Google Scholar, 4Xing G. Mathews N. Sun S. Lim S.S. Lam Y.M. Grätzel M. et al.Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.Science. 2013; 342: 344-347Crossref PubMed Scopus (5027) Google Scholar, 5Dong Q. Fang Y. Shao Y. Mulligan P. Qiu J. Cao L. et al.Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals.Science. 2015; 347: 967-970Crossref PubMed Scopus (3456) Google Scholar low exciton binding energies, and easily tunable energy band gaps.6Yang W.S. Noh J.H. Jeon N.J. Kim Y.C. Ryu S. Seo J. et al.High-performance photovoltaic perovskite layers fabricated through intramolecular exchange.Science. 2015; 348: 1234-1237Crossref PubMed Scopus (4849) Google Scholar, 7Pellet N. Gao P. Gregori G. Yang T.Y. Nazeeruddin M.K. Maier J. Grätzel M. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting.Angew. Chem. Int. Ed. Engl. 2014; 53: 3151-3157Crossref PubMed Scopus (949) Google Scholar, 8Ogomi Y. Morita A. Tsukamoto S. Saitho T. Fujikawa N. Shen Q. et al.CH3NH3SnXPb(1–x)I3 perovskite solar cells covering up to 1060 nm.J. Phys. Chem. Lett. 2014; 5: 1004-1011Crossref PubMed Scopus (734) Google Scholar, 9Stoumpos C.C. Malliakas C.D. Kanatzidis M.G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties.Inorg. Chem. 2013; 52: 9019-9038Crossref PubMed Scopus (3558) Google Scholar, 10Noh J.H. Im S.H. Heo J.H. Mandal T.N. Seok S.I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells.Nano Lett. 2013; 13: 1764-1769Crossref PubMed Scopus (3439) Google Scholar Because of these excellent properties, researchers have increased the efficiency of PSCs to greater than 25% within a short period of time.11NRELBest research-cell efficiencies.https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200708.pdfDate: 2020Google Scholar, 12Correa Baena J.P. Steier L. Tress W. Saliba M. Neutzner S. Matsui T. Giordano F. Jacobsson T.J. Srimath Kandada A.R. Zakeeruddin S.M. et al.Highly efficient planar perovskite solar cells through band alignment engineering.Energy Environ. Sci. 2015; 8: 2928-2934Crossref Google Scholar, 13Jeon N.J. Noh J.H. Yang W.S. Kim Y.C. Ryu S. Seo J. Seok S.I. Compositional engineering of perovskite materials for high-performance solar cells.Nature. 2015; 517: 476-480Crossref PubMed Scopus (4493) Google Scholar, 14Jesper Jacobsson T.J. Correa-Baena J.-P. Pazoki M. Saliba M. Schenk K. Grätzel M. Hagfeldt A. Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells.Energy Environ. Sci. 2016; 9: 1706-1724Crossref Google Scholar PSCs comprise a cathode, an ETL, a light absorption layer, a hole transport layer (HTL), and an anode. High-efficiency PSCs generally have an n–i–p configuration, and these devices can usually be further categorized into two structures: planar-type and mp-type solar cells. Planar devices, which can be fabricated through direct deposition of a perovskite layer onto compact-TiO2 (c-TiO2), have the advantage of a simple manufacturing process and low manufacturing costs. Mp-structured devices include the mesoscopic (mp)-TiO2 layer that serves as a scaffold.15Saliba M. Matsui T. Seo J.Y. Domanski K. Correa-Baena J.P. Nazeeruddin M.K. Zakeeruddin S.M. Tress W. Abate A. Hagfeldt A. Grätzel M. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency.Energy Environ. Sci. 2016; 9: 1989-1997Crossref PubMed Google Scholar, 16Ahn N. Son D.Y. Jang I.H. Kang S.M. Choi M. Park N.G. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide.J. Am. Chem. Soc. 2015; 137: 8696-8699Crossref PubMed Scopus (1693) Google Scholar, 17Kim D.H. Han G.S. Seong W.M. Lee J.W. Kim B.J. Park N.G. et al.Niobium doping effects on TiO2 mesoscopic electron transport layer-based perovskite solar cells.ChemSusChem. 2015; 8: 2392-2398Crossref PubMed Scopus (116) Google Scholar The higher efficiencies have been achieved with mp-structured devices rather than with planar devices.18Xing G. Wu B. Chen S. Chua J. Yantara N. Mhaisalkar S. et al.Interfacial electron transfer barrier at compact TiO2/CH3NH3PbI3 heterojunction.Small. 2015; 11: 3606-3613Crossref PubMed Scopus (161) Google Scholar,19Wojciechowski K. Stranks S.D. Abate A. Sadoughi G. Sadhanala A. Kopidakis N. Rumbles G. Li C.Z. Friend R.H. Jen A.K.-Y. Snaith H.J. Heterojunction modification for highly efficient organic–inorganic perovskite solar cells.ACS Nano. 2014; 8: 12701-12709Crossref PubMed Scopus (526) Google Scholar The lower efficiency of the c-TiO2 planar structure is attributable to the electron barrier at the interface between c-TiO2 and perovskite, which results in the low electron mobility (10−5 cm3V−1S−1) of the c-TiO2 layer or in interfacial c-TiO2/perovskite traps at the interface.20Liu D. Li S. Zhang P. Wang Y. Zhang R. Sarvari H. et al.Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer.Nano Energy. 2017; 31: 462-468Crossref Google Scholar, 21Jiang Q. Zhang X. You J. SnO2: a wonderful electron transport layer for perovskite solar cells.Small. 2018; 14: e1801154Crossref Scopus (354) Google Scholar, 22Jiang Q. Zhang L. Wang H. Yang X. Meng J. Liu H. et al.Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells.Nat. Energy. 2017; 2: 16177Crossref Scopus (1110) Google Scholar, 23Wang Y. Wan J. Ding J. Hu J.S. Wang D. A rutile TiO2 electron transport layer for the enhancement of charge collection for efficient perovskite solar cells.Angew. Chem. Int. Ed. Engl. 2019; 58: 9414-9418Crossref PubMed Scopus (59) Google Scholar This barrier is likely why an mp-TiO2 scaffold was needed to increase the charge decay channel and reduce charge accumulation at the TiO2/perovskite interface.24Heo J.H. Han H.J. Kim D. Ahn T.K. Im S.H. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency.Energy Environ. Sci. 2015; 8: 1602-1608Crossref Google Scholar Therefore, in the case of mp-type PSCs, the properties of the mp-TiO2 ETLs are a key factor for improving device performance. To promote the injection of light-generating electrons and reduce energy loss, the mp-TiO2 must have energy levels compatible with those of the perovskite materials used in PSCs. In addition, ETLs must have high electron mobility to enable fast electron transport. One of the strategies to improve the characteristics of mp-TiO2 is doping with various dopants. Numerous studies on doping mp-TiO2 with various substances to improve its transport properties have been reported. Metal doping of TiO2 enhances its electrical conductivity, and the resultant metal-ion-doped TiO2 can be used to enhance charge transport in PSCs.25Wu M.-C. Chan S.-H. Lee K.-M. Chen S.-H. Jao M.-H. Chen Y.-F. et al.Enhancing the efficiency of perovskite solar cells using mesoscopic zinc-doped TiO2 as the electron extraction layer through band alignment.J. Mater. Chem. A. 2018; 6: 16920-16931Crossref Google Scholar Various metal-ion-doped TiO2 materials, including Nb-doped TiO2,17Kim D.H. Han G.S. Seong W.M. Lee J.W. Kim B.J. Park N.G. et al.Niobium doping effects on TiO2 mesoscopic electron transport layer-based perovskite solar cells.ChemSusChem. 2015; 8: 2392-2398Crossref PubMed Scopus (116) Google Scholar,26Yang M. Guo R. Kadel K. Liu Y. O’Shea K. Bone R. et al.Improved charge transport of Nb-doped TiO2 nanorods in methylammonium lead iodide bromide perovskite solar cells.J. Mater. Chem. A. 2014; 2: 19616-19622Crossref Google Scholar,27Chen B.-X. Rao H.-S. Li W.-G. Xu Y.-F. Chen H.-Y. Kuang D.-B. et al.Achieving high-performance planar perovskite solar cell with Nb-doped TiO2 compact layer by enhanced electron injection and efficient charge extraction.J. Mater. Chem. A. 2016; 4: 5647-5653Crossref Google Scholar Y-doped TiO2,28Qin P. Domanski A.L. Chandiran A.K. Berger R. Butt H.J. Dar M.I. et al.Yttrium-substituted nanocrystalline TiO2 photoanodes for perovskite based heterojunction solar cells.Nanoscale. 2014; 6: 1508-1514Crossref PubMed Google Scholar Mg-doped TiO2,29Manseki K. Ikeya T. Tamura A. Ban T. Sugiura T. Yoshida T. Mg-doped TiO2 nanorods improving open-circuit voltages of ammonium lead halide perovskite solar cells.RSC Adv. 2014; 4: 9652-9655Crossref Google Scholar Co-doped TiO2,30Sidhik S. Cerdan Pasarán A. Esparza D. López Luke T. Carriles R. De la Rosa E. Improving the optoelectronic properties of mesoporous TiO2 by cobalt doping for high-performance hysteresis-free perovskite solar cells.ACS Appl. Mater. Interfaces. 2018; 10: 3571-3580Crossref PubMed Scopus (56) Google Scholar Sn-doped TiO2,31Zhang X. Bao Z. Tao X. Sun H. Chen W. Zhou X. Sn-doped TiO2 nanorod arrays and application in perovskite solar cells.RSC Adv. 2014; 4: 64001-64005Crossref Google Scholar Ta-doped TiO2,32Cui Q. Zhao X. Lin H. Yang L. Chen H. Zhang Y. et al.Improved efficient perovskite solar cells based on Ta-doped TiO2 nanorod arrays.Nanoscale. 2017; 9: 18897-18907Crossref PubMed Google Scholar Ru-doped TiO2,33Chavan R.D. Yadav P. Nimbalkar A. Bhoite S.P. Bhosale P.N. Kook Hong C.K. Ruthenium doped mesoporous titanium dioxide for highly efficient, hysteresis-free and stable perovskite solar cells.Sol. Energy. 2019; 186: 156-165Crossref Scopus (18) Google Scholar and Li-doped TiO2,20Liu D. Li S. Zhang P. Wang Y. Zhang R. Sarvari H. et al.Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer.Nano Energy. 2017; 31: 462-468Crossref Google Scholar,34Salazar-Villanueva M. Cruz-López A. Zaldívar-Cadena A.A. Tovar-Corona A. Guevara-Romero M.L. Vazquez-Cuchillo O. Effect of the electronic state of Ti on M-doped TiO2 nanoparticles (M=Zn, Ga or Ge) with high photocatalytic activities: a experimental and DFT molecular study.Mater. Sci. Semicond. Process. 2017; 58: 8-14Crossref Scopus (20) Google Scholar,35Giordano F. Abate A. Correa Baena J.P. Saliba M. Matsui T. Im S.H. et al.Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells.Nat. Commun. 2016; 7: 10379Crossref PubMed Scopus (619) Google Scholar have been used to enhance the performance of PSCs. In particular, it is well known that the doping of mp-TiO2 with lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) is effective for improving the electrical properties of the ETLs of PSCs. Chen et al. demonstrated that an ETLs of LiTFSI-doped TiO2 can reduce the density of electron traps dramatically without negatively affecting the optical properties. They found that electrons in the perovskite film can be extracted more efficiently by LiTFSI-doped TiO2 than by conventional TiO2.20Liu D. Li S. Zhang P. Wang Y. Zhang R. Sarvari H. et al.Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer.Nano Energy. 2017; 31: 462-468Crossref Google Scholar Grätzel et al. demonstrated that LiTSFI-doped TiO2 electrodes exhibit superior electronic properties by reducing the electronic trap states, enabling faster electron transport, and improving the power conversion efficiency (PCE) of the device from 17% to 19%, with negligible hysteresis.35Giordano F. Abate A. Correa Baena J.P. Saliba M. Matsui T. Im S.H. et al.Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells.Nat. Commun. 2016; 7: 10379Crossref PubMed Scopus (619) Google Scholar Although it has been known that Li doping is helpful in improving the efficiency of PSCs, many studies have not been conducted for various types of Li-salts such as interstitial Li doping into the TiO2 or chemical Li-O-Ti bonding doping. Furthermore, the effect of the counter anions (TFSI−, CO32−, Cl−, and F−) with Li-salts doping in the mp-TiO2 was not systemically studied on the electrical properties of mp-TiO2 used as an ETLs.20Liu D. Li S. Zhang P. Wang Y. Zhang R. Sarvari H. et al.Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer.Nano Energy. 2017; 31: 462-468Crossref Google Scholar,34Salazar-Villanueva M. Cruz-López A. Zaldívar-Cadena A.A. Tovar-Corona A. Guevara-Romero M.L. Vazquez-Cuchillo O. Effect of the electronic state of Ti on M-doped TiO2 nanoparticles (M=Zn, Ga or Ge) with high photocatalytic activities: a experimental and DFT molecular study.Mater. Sci. Semicond. Process. 2017; 58: 8-14Crossref Scopus (20) Google Scholar,35Giordano F. Abate A. Correa Baena J.P. Saliba M. Matsui T. Im S.H. et al.Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells.Nat. Commun. 2016; 7: 10379Crossref PubMed Scopus (619) Google Scholar In this study, we investigated the effect of various counter anions of Li-salt dopants on the ETLs and the device characteristics by doping LiTFSI, Li2CO3, LiCl, and LiF into mp-TiO2 used as an ETLs in PSCs. The morphology, crystallographic properties, optical absorption characteristics, photoluminescence properties, electrochemical impedance spectra, current density-voltage (J–V) curves, and stability of the ETLs fabricated by using mp-TiO2 doped with various Li-salts were investigated. Interestingly, the doping of various Li-salts into ETLs strongly affected their electrical properties and device performance, depending on the counter anion with the Li-salt. This is greatly affected by whether only a pure Li-doped mpTiO2 is formed or residual anions remain together. When LiTFSI, Li2CO3, LiCl, and LiF were doped into mp-TiO2, Li2CO3-doped TiO2 showed excellent electrical and optical properties, which are especially directly related to the performance of the solar cells. Only Li2CO3 formed pure Li-doped mp-TiO2 without residual anions, and this purely Li-doped bond structure could generate deep conduction bands compared with the other counter anions (TFSI−, Cl−, and F−).36Mizuno M. Tanaka I. Adachi H. Chemical bonding in titanium-metalloid compounds.Phys. Rev. B. 1999; 59: 15033-15047Crossref Scopus (55) Google Scholar,37Shen Y. Søndergaard M. Christensen M. Birgisson S. Iversen B.B. Solid state formation mechanism of Li4Ti5O12 from an anatase TiO2 source.Chem. Mater. 2014; 26: 3679-3686Crossref Scopus (51) Google Scholar The highest-performing solar cells were fabricated with Li2CO3 and yielded a maximum PCE of 25.02%, with a certified PCE of 24.68%. After the device was fabricated, we confirmed that the efficiency as high as about 25% was maintained even after 500 h. This study provides a promising direction for the development of high-quality ETLs, and we expect this study to advance the development of PSCs. Figure 1A shows a schematic diagram of the PSCs based on mp-TiO2 doped with various Li-salts with different counter anions (TFSI−, CO32−, Cl−, and F−). To prepare Li-salt-doped mp-TiO2, we deposited mp-TiO2 as an ETLs and then coated an Li-salt solution onto it. Details of the procedures are described in the experimental procedures section. First, the morphologies of the mp-TiO2 films prepared with Li-salts with different anions were observed using scanning electron microscopy (SEM) images, as shown in Figures S1A–S1E. These SEM images show that the morphologies of the doped mp-TiO2 as an ETLs were not affected by Li-salt doping. Although no change in morphology was observed, we confirmed the change in the elemental composition due to the anions of Li-salts through X-ray photoelectron spectroscopy (XPS) images. The spectra in Figure S2A shows that the intensity of Ti 2p slightly decreased, regardless of the type of anion. The reason for this was considered to be because of Li ions being doped on mp-TiO2. These results are very similar with those of a previous study.38Qin J. Zhang Z. Shi W. Liu Y. Gao H. Mao Y. The optimum titanium precursor of fabricating TiO2 compact layer for perovskite solar cells.Nanoscale Res. Lett. 2017; 12: 640Crossref PubMed Scopus (23) Google Scholar Besides, in the case of anions such as TFSI, Cl, and F, the binding energy of Ti 2p showed a slight shift from 459.58 → 460.19 eV. However, in the case of Li2CO3, there was no peak shift in the binding energy of Ti 2p compared with the undoped mp-TiO2. Whereas, clear peaks corresponding to Cl 2p, F 1s, and S 2p emissions were observed for the TiO2 doped with LiCl, LiF, and LiTFSI, respectively, as shown in Figures S2B–S2D. This indicated that the anions of Li-salts were incorporated into the mp-TiO2 ETLs. Li2CO3-doped mp-TiO2 indicates that only Li is bound to mpTiO2 purely without anions. Furthermore, we found that the Li ion was doped to the entire mp-TiO2 layer from the depth profiling through XPS, as shown in Figure S3. Ultraviolet photoelectron spectroscopy (UPS) measurements demonstrate that the energy level of mp-TiO2 can be effectively modified by doping with Li-salts containing various anions. Figure 1B shows the energy-level diagrams extracted from the UPS data (Figure S4; Table S1) and the ultraviolet-visible (UV-vis) spectrum (Figure S5; Table S2). The vacuum levels of the samples were determined by linear extrapolation of the secondary electron cut-offs on the high-binding-energy side of the UPS spectra (15–18 eV). The valence-band maxima (VBMs) for the pristine mp-TiO2 and doped mp-TiO2 were extracted from the onset in the low-binding-energy side of the UPS spectra.20Liu D. Li S. Zhang P. Wang Y. Zhang R. Sarvari H. et al.Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer.Nano Energy. 2017; 31: 462-468Crossref Google Scholar,35Giordano F. Abate A. Correa Baena J.P. Saliba M. Matsui T. Im S.H. et al.Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells.Nat. Commun. 2016; 7: 10379Crossref PubMed Scopus (619) Google Scholar,39Heo J.H. You M.S. Chang M.H. Yin W. Ahn T.K. Lee S.-J. et al.Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode.Nano Energy. 2015; 15: 530-539Crossref Scopus (223) Google Scholar The conduction band minimum (CBM) level was estimated from the VBM and the measured optical band gaps extracted from the Tauc plots corresponding to the UV-vis absorption spectra (Figure S5B; Table S2). Compared with the CBM and VBM levels of pristine mp-TiO2, the mp-TiO2 doped with Li2CO3 showed the most significant change from −3.92 to −4.17 eV. As shown in Figure 1B, the mp-TiO2 doped with Li2CO3 exhibited the deepest CBM among the investigated samples. These results clearly show that the anions of the Li-salt dopants can change the energy level. Therefore, the doped mp-TiO2 was used as an efficient ETLs with the energy band alignment.36Mizuno M. Tanaka I. Adachi H. Chemical bonding in titanium-metalloid compounds.Phys. Rev. B. 1999; 59: 15033-15047Crossref Scopus (55) Google Scholar,37Shen Y. Søndergaard M. Christensen M. Birgisson S. Iversen B.B. Solid state formation mechanism of Li4Ti5O12 from an anatase TiO2 source.Chem. Mater. 2014; 26: 3679-3686Crossref Scopus (51) Google Scholar To clearly show that the anions of Li-salts strongly affect the electrical properties of the doped mp-TiO2 ETLs, we investigated the electron mobility of the mp-TiO2 with and without Li2CO3 by using space-charge-limited current (SCLC) measurements.40Södergren S. Siegbahn H. Rensmo H. Lindström H. Hagfeldt A. Lindquist S.-E. Lithium intercalation in nanoporous anatase TiO2 studied with XPS.J. Phys. Chem. B. 1997; 101: 3087-3090Crossref Scopus (218) Google Scholar, 41Song S. Kang G. Pyeon L. Lim C. Lee G.-Y. Park T. Choi J. Systematically optimized bilayered electron transport layer for highly efficient planar perovskite solar cells (η = 21.1%).ACS Energy Lett. 2017; 2: 2667-2673Crossref Scopus (135) Google Scholar, 42Jeong J. Kim H. Yoon Y.J. Walker B. Song S. Heo J. Park S.Y. Kim J.W. Kim G.-H. Kim J.Y. Formamidinium-based planar heterojunction perovskite solar cells with alkali carbonate-doped zinc oxide layer.RSC Adv. 2018; 8: 24110-24115Crossref Google Scholar This method is helpful in elucidating and comparing the charge transport behavior of doped mp-TiO2. For the SCLC measurement, an electron-only diode comprising mp-TiO2 with and without the Li2CO3 dopant on fluorine-doped tinoxide (FTO) substrates was used to enable electron injection (inset Figure 2A). The log-log plot of the current-voltage curve in Figure 2A shows that current increases linearly with voltage in the low-bias-voltage region. In the high-bias-voltage region, current increases with a much higher slope. The transition point is the ohmic-to-trap-filled-limit voltage (VTFL) transition point, and is related to the trap density.20Liu D. Li S. Zhang P. Wang Y. Zhang R. Sarvari H. et al.Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer.Nano Energy. 2017; 31: 462-468Crossref Google Scholar,43Luntz A.C. Viswanathan V. Voss J. Varley J.B. Nørskov J.K. Scheffler R. et al.Tunneling and polaron charge transport through Li2O2 in Li–O2 batteries.J. Phys. Chem. Lett. 2013; 4: 3494-3499Crossref Scopus (135) Google Scholar,44Jin M.-j. Jo J. Yoo J.-W. Impedance spectroscopy analysis on the effects of TiO2 interfacial atomic layers in ZnO nanorod polymer solar cells: effects of interfacial charge extraction on diffusion and recombination.Org. Electron. 2015; 19: 83-91Crossref Scopus (26) Google Scholar The value of the VTFL increases with increasing density of electron traps. From the I–V curves, we estimated that the VTFL value of devices based on pristine mp-TiO2 (0.537 V) is higher than that of devices based on Li2CO3-doped mp-TiO2 (0.455 V). According to the relation between electron traps and the VTFL, the density of electron traps in the pristine mp-TiO2 ETLs is much higher than that in Li2CO3-doped mp-TiO2. Li2CO3 doping clearly reduced the electron trap density. Furthermore, we calculated the electron mobility of the ETLs on the basis of the Mott-Gurney law. As a result, the Li2CO3-doped mp-TiO2 ETLs (extracted electron mobility of 2.24 × 10−5 cm2 V−1 S−1) shows a higher current than the pristine mp-TiO2 ETLs (extracted electron mobility of 5.72 × 10−6 cm2 V−1 S−1). We conducted electrochemical impedance spectroscopy (EIS) measurements to study the effect of charge transport and recombination with doped mp-TiO2 on the PSCs. EIS is a useful method to analyze interfacial properties, such as electron transport and recombination in solar cells.39Heo J.H. You M.S. Chang M.H. Yin W. Ahn T.K. Lee S.-J. et al.Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode.Nano Energy. 2015; 15: 530-539Crossref Scopus (223) Google Scholar In the EIS analysis, the high-frequency component is the signature of the transfer resistance (Rtr), and the low-frequency component is associated with the recombination resistance (Rrec). In this study, because the perovskite/HTL interface is identical for all devices, the only variable affecting the Rtr is the ETL/perovskite interface. Figure 2B shows the Nyquist plots of the EIS data recorded under dark conditions at 0.8 V. The plots for all of the solar cells show a single semicircle without transmission line (TL) behavior, irrespective of the various dopants. A TL pattern is observable when the transport resistance is lower than the recombination resistance.45Garcia-Belmonte G. Guerrero A. Bisquert J. Elucidating operating modes of bulk-heterojunction solar cells from impedance spectroscopy analysis.J. Phys. Chem. Lett. 2013; 4: 877-886Crossref PubMed Scopus (99) Google Scholar Therefore, the absence of a TL pattern indicates that all of the PSCs exhibit strong recombination, which can be interpreted by using the Gerischer impedance model.45Garcia-Belmonte G. Guerrero A. Bisquert J. Elucidating operating modes of bulk-heterojunction solar cells from impedance spectroscopy analysis.J. Phys. Chem. Lett. 2013; 4: 877-886Crossref PubMed Scopus (99) Google Scholar,46Liang P.W. Liao C.Y. Chueh C.C. Zuo F. Williams S.T. Xin X.K. Lin J. Jen A.K.-Y. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells.Adv. Mater. 2014; 26: 3748-3754Crossref PubMed Scopus (1257) Google Scholar In addition, the presence of a single semicircle in the plots indicates that the interface contacts between the active layer and the mp-TiO2 layer are not likely to be rectifying contacts.39Heo J.H. You M.S. Chang M.H. Yin W. Ahn T.K. Lee S.-J. et al.Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode.Nano Energy. 2015; 15: 530-539Crossref Scopus (223) Google Scholar,46Liang P.W. Liao C.Y. Chueh C.C. Zuo F. Williams S.T. Xin X.K. Lin J. Jen A.K.-Y. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells.Adv. Mater. 2014; 26: 3748-3754Crossref PubMed Scopus (1257) Google Scholar In these plots, the smaller diameter of the semicircle correlates with a lower recombination rate. Notably, the devices with LiCl- or Li2CO3-doped mp-TiO2 exhibit recombination resistances greater than those of devices with pristine mp-TiO2, whereas the device with LiF exhibits a lower recombination resistance. Interestingly, these trends show a strong correlation with both the CBM data obtained by UPS and the solar-cell device data (Figures 1B and S3). The greater recombination resistance in the solar cells with Li-doped mp-TiO2 can be explained by the fact that the doping process effectively modified the CBM level of t
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
Zn完成签到,获得积分10
3秒前
沙漠水发布了新的文献求助10
3秒前
cc123完成签到,获得积分10
3秒前
changge完成签到,获得积分10
3秒前
马可菠萝的账号关注了科研通微信公众号
5秒前
5秒前
雍元正完成签到 ,获得积分10
5秒前
羊六一发布了新的文献求助10
6秒前
科研通AI2S应助独特觅翠采纳,获得10
7秒前
7秒前
认真三问完成签到,获得积分10
8秒前
思源应助栉风沐雨采纳,获得10
10秒前
项羽发布了新的文献求助10
10秒前
10秒前
咸鱼卷完成签到 ,获得积分10
10秒前
Jessie完成签到,获得积分10
10秒前
11秒前
廉洁发布了新的文献求助10
12秒前
研友_nxGOmL发布了新的文献求助10
13秒前
chih_loong完成签到,获得积分10
13秒前
单薄怜寒完成签到 ,获得积分10
14秒前
果果发布了新的文献求助20
15秒前
Aurora完成签到,获得积分10
15秒前
16秒前
PCX完成签到,获得积分10
16秒前
uvk发布了新的文献求助10
16秒前
weirdo发布了新的文献求助10
17秒前
学习快乐应助学术小白采纳,获得50
18秒前
19秒前
20秒前
21秒前
chunchun完成签到,获得积分10
23秒前
24秒前
壹玖一陆发布了新的文献求助10
24秒前
啊啊啊啊完成签到,获得积分20
27秒前
27秒前
viewerwhy发布了新的文献求助10
27秒前
高分求助中
Thermodynamic data for steelmaking 3000
Teaching Social and Emotional Learning in Physical Education 900
Lexique et typologie des poteries: pour la normalisation de la description des poteries (Full Book) 400
Cardiology: Board and Certification Review 300
Transformerboard III 300
DC Line Ground Fault Detection Scheme for Line Commutated Converter High Voltage Direct Current Connected to Renewable Energy Source 220
Artificial intelligence and upper gastrointestinal endoscopy: what is the optimal study design? 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2355616
求助须知:如何正确求助?哪些是违规求助? 2062253
关于积分的说明 5146302
捐赠科研通 1792107
什么是DOI,文献DOI怎么找? 895252
版权声明 557383
科研通“疑难数据库(出版商)”最低求助积分说明 477807