促炎细胞因子
巨噬细胞极化
巨噬细胞激活因子
巨噬细胞
免疫系统
化学
细胞生物学
免疫学
生物
炎症
体外
生物化学
作者
Yuting Su,Fan Yang,Lei Chen,Peter Chi Keung Cheung
标识
DOI:10.1021/acs.jafc.2c01710
摘要
β-d-glucans have the potential of serving as both macrophage-targeted carriers and immune stimulators via inducing trained immunity in macrophages. In this study, a carboxymethylated β-glucan from mushroom sclerotium of Pleurotus tuber-regium (CMPTR) was combined with iron oxide nanoparticles (IONPs) to form nanocomplexes (CMPTR/IONPs) with particle size around 193 ± 7 nm, which could exert a concerted effect on inducing proinflammatory M1 phenotype macrophages for immunotherapy. This nanocomplex exhibited good stability and low cytotoxicity (over 80% cellular viability of RAW 264.7 and THP-1) and higher cellular uptake by murine macrophages compared with B16F10 cells (p < 0.05). CMPTR/IONPs could convert M2-like bone marrow-derived macrophages into M1 phenotypes with upregulated expression of pro-inflammatory cytokines (IL12 and TNF-α, p < 0.05) and reduced immune-suppressive cytokines (IL10 and TGF-β, p < 0.05). Such polarization was mediated by the combined signaling regulatory factors, including IONP-stimulated IRF5 and CMPTR-triggered TLRs-NF-κB pathways (p < 0.05). Accordingly, CMPTR could have a dual function as a macrophage-targeting carrier for IONPs and an immunostimulant to induce inflammatory M1 macrophage polarization for immunotherapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI