密度泛函理论
氧化还原
电池(电)
化学
拉曼光谱
机制(生物学)
反应机理
纳米技术
化学物理
计算化学
材料科学
无机化学
催化作用
热力学
物理
有机化学
功率(物理)
量子力学
光学
作者
Zhiwei Zhao,Long Pang,Yu‐Wei Su,Tianfu Liu,Guoxiong Wang,Chuntai Liu,Jiawei Wang,Zhangquan Peng
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2022-01-13
卷期号:7 (2): 624-631
被引量:54
标识
DOI:10.1021/acsenergylett.1c02773
摘要
The aprotic Li–CO2 battery represents a sustainable technology by virtue of energy storage capability and CO2 recyclability. However, the CO2 reduction reaction (CO2RR) mechanism underpinning the operation of Li–CO2 batteries is not yet completely understood. Herein, using in situ surface-enhanced Raman spectroscopy coupled with density functional theory calculations, we obtain direct spectroscopic evidence of the CO2RR (i.e., CO2–, CO, and Li2CO3) and propose a surface-mediated discharge pathway (i.e., 2Li+ + 2CO2 + 2e– → CO + Li2CO3) in Li–CO2 batteries. We also highlight the significant effect of the electrocatalysts' near-Fermi-level d-orbital states on the CO2RR activity through a systematic comparative study of model electrocatalysts. Moreover, deep CO2RR via "4Li+ + 3CO2 + 4e– → 2Li2CO3 + C" may be difficult to proceed because of the sluggish chemical steps involved (e.g., dimerization of two CO2– intermediates). This work provides molecular insights into the CO2RR mechanism in a Li+-aprotic medium and will be beneficial for next-generation Li–CO2 batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI