亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fiber-optic-based force and shape sensing in surgical robots: a review

机器人 机电一体化 机器人学 计算机科学 光纤 人工智能 电磁干扰 工程类 控制工程 电子工程 电信
作者
Qi Jiang,Jihua Li,Danish Masood
出处
期刊:Sensor Review [Emerald (MCB UP)]
卷期号:43 (2): 52-71 被引量:11
标识
DOI:10.1108/sr-04-2022-0180
摘要

Purpose With the increasing development of the surgical robots, the opto-mechatronic technologies are more potential in the robotics system optimization. The optic signal plays an important role in opto-mechatronic systems. This paper aims to present a review of the research status on fiber-optic-based force and shape sensors in surgical robots. Design/methodology/approach Advances of fiber-optic-based force and shape sensing techniques in the past 20 years are investigated and summarized according to different surgical requirement and technical characteristics. The research status analysis and development prospects are discussed. Findings Compared with traditional electrical signal conduction, the phototransduction provides higher speed transmission, lower signal loss and the immunity to electromagnetic interference in robot perception. Most importantly, more and more advanced optic-based sensing technologies are applied to medical robots in the past two decades because the prominence is magnetic resonance imaging compatibility. For medical robots especially, fiber-optic sensing technologies can improve working security, manipulating accuracy and provide force and shape feedback to surgeon. Originality/value This is a new perspective. This paper mainly researches the application of optical fiber sensor according to different surgeries which is beneficial to learn the great potential of optical fiber sensor in surgical robots. By enumerating the research progress of medical robots in optimization design, multimode sensing and advanced materials, the development tendency of fiber-optic-based force and shape sensing technologies in surgical robots is prospected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
diaoyulao完成签到,获得积分10
刚刚
麻辣小龙虾完成签到,获得积分10
4秒前
DChen完成签到 ,获得积分10
4秒前
9秒前
俭朴涫发布了新的文献求助10
13秒前
Bienk完成签到,获得积分10
18秒前
YYL完成签到 ,获得积分10
27秒前
Wu完成签到,获得积分10
28秒前
29秒前
34秒前
王威发布了新的文献求助80
36秒前
36秒前
查不到我就吃饭完成签到 ,获得积分10
38秒前
40秒前
40秒前
旺仔先生完成签到 ,获得积分10
40秒前
汤米bb发布了新的文献求助10
41秒前
41秒前
shaun发布了新的文献求助10
43秒前
SDNUDRUG完成签到,获得积分10
44秒前
crane完成签到,获得积分10
46秒前
辞却发布了新的文献求助10
47秒前
Jasper应助迷人问兰采纳,获得10
54秒前
shaun完成签到,获得积分10
54秒前
Frank完成签到 ,获得积分10
55秒前
搜集达人应助汤米bb采纳,获得10
58秒前
1分钟前
1分钟前
1分钟前
xtheuv完成签到,获得积分10
1分钟前
绿柏发布了新的文献求助10
1分钟前
1分钟前
xtheuv发布了新的文献求助10
1分钟前
安年完成签到 ,获得积分10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
小白完成签到 ,获得积分10
1分钟前
花陵发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469900
求助须知:如何正确求助?哪些是违规求助? 4572919
关于积分的说明 14337640
捐赠科研通 4499821
什么是DOI,文献DOI怎么找? 2465323
邀请新用户注册赠送积分活动 1453731
关于科研通互助平台的介绍 1428270