AI and Quantum Computing in Binary Photocatalytic Hydrogen Production

光催化 制氢 二进制数 生产(经济) 量子 环境科学 材料科学 化学 物理 经济 催化作用 数学 量子力学 有机化学 算术 宏观经济学
作者
Dennis Delali Kwesi Wayo,Leonardo Goliatt,D.D. Ganji
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2501.00575
摘要

Photocatalytic water splitting has emerged as a sustainable pathway for hydrogen production, leveraging sunlight to drive chemical reactions. This review explores the integration of density functional theory (DFT) with machine learning (ML) to accelerate the discovery, optimization, and design of photocatalysts. DFT provides quantum-mechanical insights into electronic structures and reaction mechanisms, while ML algorithms enable high-throughput analysis of material properties, prediction of catalytic performance, and inverse design. This paper emphasizes advancements in binary photocatalytic systems, highlighting materials like $TiO_2$, $BiVO_4$, and $g-C_3N_4$, as well as novel heterojunctions and co-catalysts that improve light absorption and charge separation efficiency. Key breakthroughs include the use of ML architectures such as random forests, support vector regression, and neural networks, trained on experimental and computational datasets to optimize band gaps, surface reactions, and hydrogen evolution rates. Emerging techniques like quantum machine learning (QML) and generative models (GANs, VAEs) demonstrate the potential to explore hypothetical materials and enhance computational efficiency. The review also highlights advanced light sources, such as tunable LEDs and solar simulators, for experimental validation of photocatalytic systems. Challenges related to data standardization, scalability, and interpretability are addressed, proposing collaborative frameworks and open-access repositories to democratize DFT-AI tools. By bridging experimental and computational methodologies, this synergistic approach offers transformative potential for achieving scalable, cost-effective hydrogen production, paving the way for sustainable energy solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
我是老大应助zhaoqing采纳,获得30
4秒前
4秒前
狂野映寒完成签到,获得积分10
5秒前
睡到人间煮饭时完成签到,获得积分10
5秒前
天天快乐应助纷扬采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
一行发布了新的文献求助10
8秒前
9秒前
iqa完成签到 ,获得积分10
9秒前
9秒前
10秒前
化悲愤高压完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
13秒前
科研通AI6应助lcw1998采纳,获得30
13秒前
JEWEL发布了新的文献求助10
14秒前
翎宝完成签到 ,获得积分10
14秒前
哈哈哈发布了新的文献求助10
14秒前
mdx发布了新的文献求助10
15秒前
15秒前
lxr8900发布了新的文献求助10
16秒前
dpx1773发布了新的文献求助10
16秒前
17秒前
sssss发布了新的文献求助10
17秒前
PEA发布了新的文献求助10
18秒前
小蘑菇应助搞怪书兰采纳,获得10
19秒前
19秒前
jzh完成签到,获得积分10
19秒前
20秒前
小蘑菇应助皮蛋采纳,获得10
20秒前
科研通AI6应助杯水情深采纳,获得100
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626913
求助须知:如何正确求助?哪些是违规求助? 4712763
关于积分的说明 14960534
捐赠科研通 4782923
什么是DOI,文献DOI怎么找? 2554577
邀请新用户注册赠送积分活动 1516211
关于科研通互助平台的介绍 1476493