Lewis Acid–Base Pairs Constructed via Lattice Regulation for Ultrafast Catalytic Transfer Hydrogenation

催化作用 路易斯酸 化学 环境友好型 组合化学 有机化学 生态学 生物
作者
Dongjie Zhang,Yue Zhang,Haitao Li,Yin Zhang,Peiru Zhang
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:13 (1): 471-481 被引量:4
标识
DOI:10.1021/acssuschemeng.4c08109
摘要

Catalytic transfer hydrogenation (CTH) strongly relies on the synergistic interaction between Lewis acid and Lewis base. Highly active, high-density, and well-dispersed Lewis acid–base pairs (LP) are crucial to achieving efficient CTH catalysis, yet forming such an ideal interface remains challenging. To address this, a novel construction strategy is presented, which leverages the regulation of the layered double hydroxide (LDH) lattice structure to establish an ideal LP interface. Supercritical isopropyl alcohol (SCIP) was employed to selectively remove hydroxyl groups and hydrogen bonds from the NiAl-LDH surface, constructing rich MCUS and Ni-OOH at the LDH interface in a simple, controllable, and environmentally friendly way. The formation process of MCUS and Ni-OOH in SCIP was analyzed using a series of dynamic characterization. Key factors restricting the formation of MCUS and Ni-OOH were identified by comparing results across different precursor preparation methods and temperatures of SCIP treatment. On this basis, the one-pot reaction system was established. Within this system, catalyst preparation and the CTH of ethyl levulinate (EL) to γ-valerolactone (GVL) co-occur. The system simplifies the CTH reaction process and exhibits ultrahigh catalytic efficiency, with a GVL formation rate of 0.780 molGVL·g–1·h–1. Compared to traditional reaction systems and catalysts, the developed one-pot reaction system and catalyst demonstrates significant advantages and exhibit excellent cyclic stability after catalyst stabilization. The combination of the LP interface and the one-pot reaction system enabled environmentally friendly, economical, and efficient biomass-based GVL synthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
梦里花落声应助张张张采纳,获得10
刚刚
dogontree发布了新的文献求助10
刚刚
1秒前
酷波er应助11224455采纳,获得10
1秒前
知行合一发布了新的文献求助10
1秒前
1秒前
糖布里部发布了新的文献求助10
1秒前
sunzine发布了新的文献求助10
1秒前
功夫熊猫发布了新的文献求助10
2秒前
大模型应助帝国超级硕士采纳,获得10
2秒前
青塘龙仔发布了新的文献求助10
2秒前
2秒前
3秒前
小人物完成签到,获得积分10
3秒前
高挑的冰露完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
wyyj发布了新的文献求助10
4秒前
Rose_Yang完成签到 ,获得积分10
4秒前
kento发布了新的文献求助30
4秒前
盼盼完成签到,获得积分10
5秒前
听风随影发布了新的文献求助10
5秒前
平硕发布了新的文献求助20
5秒前
慕青应助250采纳,获得10
5秒前
煦白发布了新的文献求助10
5秒前
顾矜应助37采纳,获得10
5秒前
6秒前
Happy完成签到,获得积分20
6秒前
李天磊发布了新的文献求助10
7秒前
酷波er应助berylmaa采纳,获得10
7秒前
jingjing完成签到,获得积分20
7秒前
万能图书馆应助奥沙利楠采纳,获得10
7秒前
无花果应助冉柒采纳,获得10
7秒前
7秒前
7秒前
nooooorae应助张张采纳,获得30
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193346
求助须知:如何正确求助?哪些是违规求助? 4375949
关于积分的说明 13627668
捐赠科研通 4230726
什么是DOI,文献DOI怎么找? 2320543
邀请新用户注册赠送积分活动 1318909
关于科研通互助平台的介绍 1269195