An attention mechanism‐based lightweight UNet for musculoskeletal ultrasound image segmentation

分割 计算机科学 人工智能 图像分割 模式识别(心理学) 威尔科克森符号秩检验 特征(语言学) 计算机视觉 数学 统计 语言学 哲学 曼惠特尼U检验
作者
Yan Zhang,Xilong Yu,Qing Hu,Xianlei Zhang,Yixin Yang,Xiao Han
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17503
摘要

Abstract Background Accurate musculoseletal ultrasound (MSKUS) image segmentation is crucial for diagnosis and treatment planning. Compared with traditional segmentation methods, deploying deep learning segmentation methods that balance segmentation efficiency, accuracy, and model size on edge devices has greater advantages. Purpose This paper aims to design a MSKUS image segmentation method that has fewer parameters, lower computation complexity and higher segmentation accuracy. Methods In this study, an attention mechanism‐based lightweight UNet (AML‐UNet) is designed to segment target muscle regions in MSKUS images. To suppress the transmission of redundant feature, Channel Reconstruction and Spatial Attention Module is designed in the encoding path. In addition, considering the inherent characteristic of MSKUS image, Multiscale Aggregation Module is developed to replace the skip connection architecture of U‐Net. Deep supervision is also introduced to the decoding path to refine predicted masks gradually. Our method is evaluated on two MSKUS 2D‐image segmentation datasets, including 3917 MSKUS and 1534 images respectively. In the experiments, a five‐fold cross‐validation method is adopted in ablation experiments and comparison experiments. In addition, Wilcoxon Signed‐Rank Test and Bonferroni correction are employed to validate the significance level. 0.01 was used as the statistical significance level in our paper. Results AML‐UNet yielded a mIoU of 84.17% and 90.14% on two datasets, representing a 3.38% () and 3.48% () over the Unext model. The number of parameters and FLOPs are only 0.21M and 0.96G, which are 1/34 and 1/29 of those in comparison with UNet. Conclusions Our proposed model achieved superior results with fewer parameters while maintaining segmentation efficiency and accuracy compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上香菇完成签到,获得积分10
1秒前
帕芙芙完成签到,获得积分10
2秒前
shuang0116应助跳跃采纳,获得10
3秒前
沿岸有贝壳完成签到,获得积分10
3秒前
HRX完成签到,获得积分20
3秒前
song发布了新的文献求助10
4秒前
自然的钻石完成签到,获得积分10
4秒前
bzc完成签到,获得积分10
5秒前
脑洞疼应助庞伟泽采纳,获得10
6秒前
WLM完成签到,获得积分10
7秒前
华仔应助ty-采纳,获得10
8秒前
Vera完成签到,获得积分10
9秒前
orixero应助人不犯二枉少年采纳,获得10
10秒前
别吃我的鱼完成签到,获得积分10
10秒前
11秒前
S月小小发布了新的文献求助10
11秒前
胖一达完成签到 ,获得积分10
12秒前
12秒前
12秒前
wen发布了新的文献求助10
14秒前
勤劳的音响完成签到,获得积分10
14秒前
舒心聪展完成签到,获得积分10
14秒前
SAY完成签到,获得积分10
14秒前
爱你的心完成签到 ,获得积分10
17秒前
17秒前
17秒前
18秒前
Lynn完成签到,获得积分20
18秒前
19秒前
庞伟泽发布了新的文献求助10
19秒前
dwj发布了新的文献求助20
20秒前
swy完成签到,获得积分10
22秒前
倩倩发布了新的文献求助10
22秒前
羊笨笨完成签到 ,获得积分10
22秒前
跳跃完成签到,获得积分10
22秒前
23秒前
郑波涛完成签到,获得积分10
23秒前
大模型应助杨佳于采纳,获得10
25秒前
秀丽静曼发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
25秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881760
求助须知:如何正确求助?哪些是违规求助? 3424126
关于积分的说明 10737854
捐赠科研通 3149092
什么是DOI,文献DOI怎么找? 1737748
邀请新用户注册赠送积分活动 839001
科研通“疑难数据库(出版商)”最低求助积分说明 784208