Discovering Time-Aware Hidden Dependencies with Personalized Graphical Structure in Electronic Health Records

健康档案 电子健康档案 计算机科学 图形模型 数据挖掘 数据科学 情报检索 人工智能 医疗保健 经济 经济增长
作者
Arya Hadizadeh Moghaddam,Mohsen Nayebi Kerdabadi,Bin Liu,Mei Liu,Zijun Yao
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
标识
DOI:10.1145/3709143
摘要

Over the past decade, significant advancements in mining electronic health records (EHRs) have enabled a broad range of decision-support applications, and offered an unprecedented capacity for predicting critical events such as disease prognosis and mortality in healthcare. Despite the availability of comprehensive coding systems in EHRs (e.g., ICD-9), which are designed to record diverse information on diseases, procedures, and medications over time, the complex and dynamic dependencies among the recorded data are usually not captured. This limitation often hinders the contextual understanding of medical observations for effective EHR representation learning. Therefore, there is a compelling need to discover a hidden “EHR graph” that represents the medical relationship between the observed features according to a patient’s history. These hidden graphs consisting of the medical codes from the same visits can offer a comprehensive insight derived from disease-to-disease, disease-to-drug, and drug-to-drug dependencies. However, it is still unclear how to address the challenge that the dependencies may vary from patient to patient, and they can dynamically evolve from one visit to another. To this end, we propose Timeaware Personalized Graph Transformer (TPGT), a novel attention-based time-aware hidden graph model, that captures the personalized graphical structures among observed medical codes and summarizes the temporal code dependencies over time to improve patient representation for outcome prediction. Built upon an intra-visit and an inter-visit dual-attention mechanism to model patients’ EHR graphs, our model offers an interpretability of what diagnosis or medication in a patient’s history can interact, and how those interactions may change over time. We conduct extensive experiments on two real-world EHR datasets for different healthcare predictive tasks: acute kidney injury (AKI) prediction and ICU mortality prediction. The experimental results demonstrate a significant performance improvement of the proposed model over baselines through multi-aspect quantitative evaluation. Furthermore, we perform various qualitative studies to validate the interpretability of the model which highlights the application of the proposed method in the context of personalized medicine.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qausyh完成签到,获得积分10
刚刚
背后的小白菜完成签到,获得积分10
1秒前
胡不归完成签到,获得积分10
1秒前
科研通AI5应助秋子采纳,获得10
2秒前
2秒前
玩命的友安完成签到,获得积分10
3秒前
yj完成签到 ,获得积分10
3秒前
xiangxl完成签到,获得积分10
3秒前
菜菜果冻完成签到,获得积分10
3秒前
小蘑菇应助乔垣结衣采纳,获得10
4秒前
莹Y发布了新的文献求助10
4秒前
Ice_zhao发布了新的文献求助10
4秒前
LLLLLLL1471发布了新的文献求助10
4秒前
peggypan108完成签到,获得积分10
4秒前
4秒前
一把过发布了新的文献求助10
5秒前
善良青筠发布了新的文献求助10
5秒前
5秒前
5秒前
淡定的萝莉完成签到,获得积分10
5秒前
科研通AI5应助陶醉的手套采纳,获得10
5秒前
6秒前
Zbzb完成签到,获得积分20
7秒前
7秒前
7秒前
ZP发布了新的文献求助10
7秒前
7秒前
Liou应助CC采纳,获得10
7秒前
元谷雪完成签到,获得积分10
7秒前
冰魂应助大大彬采纳,获得10
8秒前
聪明安露发布了新的文献求助10
8秒前
睡着的鱼完成签到,获得积分10
8秒前
Yiwaa完成签到,获得积分10
9秒前
zrd发布了新的文献求助10
9秒前
酷波er应助茉莉采纳,获得10
9秒前
刘姿麟完成签到 ,获得积分10
9秒前
Ch完成签到 ,获得积分10
9秒前
Lm发布了新的文献求助10
10秒前
10秒前
莹Y完成签到,获得积分10
10秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804725
求助须知:如何正确求助?哪些是违规求助? 3349592
关于积分的说明 10345510
捐赠科研通 3065684
什么是DOI,文献DOI怎么找? 1683244
邀请新用户注册赠送积分活动 808762
科研通“疑难数据库(出版商)”最低求助积分说明 764734