High-density lipoprotein nanoparticles spontaneously target to damaged renal tubules and alleviate renal fibrosis by remodeling the fibrotic niches

纤维化 细胞生物学 医学 生物 内科学
作者
Shanshan He,Xiaoyang Li,Yuanyuan He,Ling Guo,Yunzhou Dong,Leilei Wang,Lan Yang,Lin Li,Shiyun Huang,Jia-Li Fu,Qing Lin,Zhirong Zhang,Ling Zhang
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:16 (1) 被引量:5
标识
DOI:10.1038/s41467-025-56223-z
摘要

Chronic kidney disease (CKD) ultimately causes renal fibrosis and end-stage renal disease, thus seriously threatens human health. However, current medications for CKD and fibrosis are inefficient, which is often due to poor targeting capability to renal tubule. In this study, we discover that biomimetic high-density lipoprotein (bHDL) lipid nanoparticles possess excellent targeting ability to injured tubular epithelial cells by kidney injury molecule-1(KIM-1) mediated internalization. Thus, we co-load anti-inflammatory drug triptolide (TP) and anti-fibrotic drug nintedanib (BIBF) on bHDL nanoparticles to treat CKD. Based on the targeted delivery and mutual enhancement of the efficacy of co-delivered drugs, the bHDL-based system effectively reduces kidney injury and alleviates renal fibrosis in different CKD mouse models. The mechanistic study shows that BIBF and TP synergistically remodel the fibrotic niches by decreasing inflammatory cytokines, limiting immune cell infiltration and inhibiting the activation of myofibroblasts. The bHDL vehicle also possesses high manufacturability, good safety and adequately reduces the toxicity of TP. Thus, this system is promising for the treatment of CKD and bHDL has good potential for delivering agents to damaged renal tubular epithelial cells. Effectively delivering medications to the renal tubule to delay or halt chronic kidney disease progression remains a significant unmet clinical challenge. Here, authors introduce an innovative strategy for renal tubule targeting using biomimetic high-density lipoprotein (bHDL) nanoparticles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阅遍SCI完成签到,获得积分10
1秒前
852应助疑夕采纳,获得10
6秒前
赖锦标发布了新的文献求助10
7秒前
Qing完成签到,获得积分10
7秒前
7秒前
wzgkeyantong完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
17秒前
19秒前
无花果应助缓慢的饼干采纳,获得10
21秒前
zoey发布了新的文献求助10
23秒前
23秒前
26秒前
26秒前
完美世界应助点击获取采纳,获得10
28秒前
小鹿完成签到,获得积分10
30秒前
海藻发布了新的文献求助10
31秒前
31秒前
王铭卓完成签到,获得积分10
31秒前
31秒前
SciGPT应助sxp1031采纳,获得10
32秒前
四文鱼发布了新的文献求助10
33秒前
34秒前
量子星尘发布了新的文献求助10
34秒前
NSS发布了新的文献求助10
38秒前
38秒前
40秒前
Orange应助机灵的海蓝采纳,获得10
42秒前
perfect发布了新的文献求助10
45秒前
花花完成签到 ,获得积分10
45秒前
根号3完成签到 ,获得积分10
49秒前
Kiosta完成签到,获得积分10
49秒前
54秒前
研友_Z30GJ8完成签到,获得积分0
55秒前
57秒前
量子星尘发布了新的文献求助10
58秒前
疑夕发布了新的文献求助10
1分钟前
拓跋箴完成签到,获得积分10
1分钟前
Luffa完成签到,获得积分10
1分钟前
cdliuchao完成签到,获得积分10
1分钟前
隐形曼青应助aa采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Materials Selection in Mechanical Design 5000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4311743
求助须知:如何正确求助?哪些是违规求助? 3832498
关于积分的说明 11991097
捐赠科研通 3472634
什么是DOI,文献DOI怎么找? 1904115
邀请新用户注册赠送积分活动 951040
科研通“疑难数据库(出版商)”最低求助积分说明 852774