重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Deriving consensus sepsis clusters via goal-directed subgroup identification in multi-omics study

作者
Lin Chen,Jie Yang,Suibi Yang,Weimin Zhang,Xuandong Jiang,Xiaojun Wu,Xianglin Meng,Fengzhi Zhao,Wan‐Jie Gu,Lihui Wang,Yuetian Yu,Lingxia Cheng,Yuhong Jin,Jian Sun,Hongying Ni,Mihir R. Atreya,Paul Elbers,Kwok M. Ho
出处
期刊:Nature Communications [Springer Nature]
卷期号:16 (1): 10328-10328
标识
DOI:10.1038/s41467-025-65271-4
摘要

Sepsis, a syndrome of life-threatening organ dysfunction caused by dysregulated host responses to infection, exhibits profound pathobiological heterogeneity, hindering the development of effective therapies. Current subtyping approaches, often reliant on single-omics data or unsupervised clustering, yield poorly reproducible and therapeutically misaligned classifications. Here, we introduce a goal-directed subgroup identification (GD-SI) framework that optimizes patient stratification for differential treatment responses, integrating longitudinal multi-omics data (transcriptomic, proteomic, metabolomic, phenomic) from 1327 subjects across 43 hospitals. While supervised multi-omics integration frameworks (e.g., DIABLO) effectively capture shared biological signals, our approach anchors subgroup discovery directly to treatment-effect optimization. This strategy achieves substantial cross-omic concordance and, crucially, generalizes to predict differential treatment response across international critical care databases. Patients stratified by GD-SI-derived benefit scores for restrictive versus liberal fluid resuscitation exhibited marked survival differences, with similar advantages observed for ulinastatin immunomodulation. External validations in MIMIC-IV and ZiGongDB confirm prognostic generalizability. This framework reconciles biological heterogeneity with clinical actionability, offering a scalable infrastructure for precision trial design and personalized sepsis management. Our findings underscore the translational potential of omics-driven, goal-directed stratification to overcome decades of therapeutic stagnation in critical care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦的雨莲完成签到,获得积分10
刚刚
刚刚
牛盛完成签到,获得积分10
刚刚
li发布了新的文献求助30
刚刚
啦啦啦发布了新的文献求助10
1秒前
1秒前
可爱的函函应助whitesheep采纳,获得10
1秒前
1秒前
1秒前
文静的紫萱完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
ninelie完成签到,获得积分10
2秒前
QP34发布了新的文献求助10
2秒前
欧科狗发布了新的文献求助10
2秒前
FashionBoy应助虚心碧琴采纳,获得10
3秒前
小田发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
星期八完成签到,获得积分10
3秒前
bfbdfbdf发布了新的文献求助10
3秒前
3秒前
yggmdggr发布了新的文献求助30
3秒前
AlwaysKim发布了新的文献求助10
4秒前
4秒前
4秒前
简单完成签到,获得积分10
4秒前
昭昭完成签到,获得积分0
4秒前
5秒前
5秒前
炙热紫发布了新的文献求助10
5秒前
chenhouhan发布了新的文献求助10
5秒前
Arbitrary完成签到,获得积分10
6秒前
勤奋幻天完成签到,获得积分10
6秒前
6秒前
6秒前
天很蓝发布了新的文献求助10
6秒前
LinYX发布了新的文献求助10
7秒前
7秒前
remake441完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467266
求助须知:如何正确求助?哪些是违规求助? 4570917
关于积分的说明 14327656
捐赠科研通 4497524
什么是DOI,文献DOI怎么找? 2463982
邀请新用户注册赠送积分活动 1452857
关于科研通互助平台的介绍 1427654