A hybridization of evolution strategies with iterated greedy algorithm for no-wait flow shop scheduling problems

算法 计算机科学 水准点(测量) 作业车间调度 数学优化 贪婪算法 上下界 数学 地铁列车时刻表 大地测量学 操作系统 数学分析 地理
作者
Bilal Khurshid,Shahid Maqsood,Yahya Khurshid,Khawar Naeem,Qazi Salman Khalid
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:5
标识
DOI:10.1038/s41598-023-47729-x
摘要

Abstract This study investigates the no-wait flow shop scheduling problem and proposes a hybrid (HES-IG) algorithm that utilizes makespan as the objective function. To address the complexity of this NP-hard problem, the HES-IG algorithm combines evolution strategies (ES) and iterated greedy (IG) algorithm, as hybridizing algorithms helps different algorithms mitigate their weaknesses and leverage their respective strengths. The ES algorithm begins with a random initial solution and uses an insertion mutation to optimize the solution. Reproduction is carried out using (1 + 5)-ES, generating five offspring from one parent randomly. The selection process employs (µ + λ)-ES, allowing excellent parent solutions to survive multiple generations until a better offspring surpasses them. The IG algorithm’s straightforward search mechanism aids in further improving the solution and avoiding local minima. The destruction operator randomly removes d-jobs, which are then inserted one by one using a construction operator. The local search operator employs a single insertion approach, while the acceptance–rejection criteria are based on a constant temperature. Parameters of both ES and IG algorithms are calibrated using the Multifactor analysis of variance technique. The performance of the HES-IG algorithm is calibrated with other algorithms using the Wilcoxon signed test. The HES-IG algorithm is tested on 21 Nos. Reeves and 30 Nos. Taillard benchmark problems. The HES-IG algorithm has found 15 lower bound values for Reeves benchmark problems. Similarly, the HES-IG algorithm has found 30 lower bound values for the Taillard benchmark problems. Computational results indicate that the HES-IG algorithm outperforms other available techniques in the literature for all problem sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
扒开皮皮发布了新的文献求助10
1秒前
科研通AI2S应助手抓饼啊采纳,获得10
1秒前
疯了半天完成签到,获得积分10
2秒前
2秒前
兴奋渊思完成签到 ,获得积分10
3秒前
杨少博发布了新的文献求助30
5秒前
CC发布了新的文献求助10
7秒前
畅快的念烟完成签到,获得积分10
8秒前
9秒前
miscell应助繁荣的又夏采纳,获得10
10秒前
深情安青应助谢富杰采纳,获得10
10秒前
周周发布了新的文献求助10
14秒前
传奇3应助CC采纳,获得10
14秒前
一枚研究僧完成签到,获得积分0
15秒前
Jasper应助科研通管家采纳,获得50
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
16秒前
慕青应助科研通管家采纳,获得10
16秒前
tomorrow完成签到 ,获得积分10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
温哲源应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
张慧杰完成签到,获得积分10
16秒前
大个应助科研通管家采纳,获得30
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
mryun完成签到,获得积分10
16秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得30
17秒前
天天快乐应助科研通管家采纳,获得10
17秒前
烟花应助科研通管家采纳,获得10
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
17秒前
隐形曼青应助bosszjw采纳,获得10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777790
求助须知:如何正确求助?哪些是违规求助? 3323297
关于积分的说明 10213693
捐赠科研通 3038552
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758275