Exploring Li-ion Transport Properties of Li$_3$TiCl$_6$: A Machine Learning Molecular Dynamics Study

电化学 动力学(音乐) 分子动力学 化学物理 材料科学 计算机科学 纳米技术 化学 计算化学 物理化学 心理学 教育学 电极
作者
S. Selva Chandrasekaran,Volodymyr Koverga,Anh T. Ngo
出处
期刊:Cornell University - arXiv 被引量:6
标识
DOI:10.1149/1945-7111/ad4ac9
摘要

We performed large-scale molecular dynamics simulations based on a machine-learning force field (MLFF) to investigate the Li-ion transport mechanism in cation-disordered Li$_3$TiCl$_6$ cathode at six different temperatures, ranging from 25$^\mathrm{o}$C to 100$^\mathrm{o}$C. In this work, deep neural network method and data generated by $ab-initio$ molecular dynamics (AIMD) simulations were deployed to build a high-fidelity MLFF. Radial distribution functions, Li-ion mean square displacements (MSD), diffusion coefficients, ionic conductivity, activation energy, and crystallographic direction-dependent migration barriers were calculated and compared with corresponding AIMD and experimental data to benchmark the accuracy of the MLFF. From MSD analysis, we captured both the self and distinct parts of Li-ion dynamics. The latter reveals that the Li-ions are involved in anti-correlation motion that was rarely reported for solid-state materials. Similarly, the self and distinct parts of Li-ion dynamics were used to determine Haven's ratio to describe the Li-ion transport mechanism in Li$_3$TiCl$_6$. Obtained trajectory from molecular dynamics infers that the Li-ion transportation is mainly through interstitial hopping which was confirmed by intra- and inter-layer Li-ion displacement with respect to simulation time. Ionic conductivity (1.06 mS/cm) and activation energy (0.29eV) calculated by our simulation are highly comparable with that of experimental values. Overall, the combination of machine-learning methods and AIMD simulations explains the intricate electrochemical properties of the Li$_3$TiCl$_6$ cathode with remarkably reduced computational time. Thus, our work strongly suggests that the deep neural network-based MLFF could be a promising method for large-scale complex materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大妙妙发布了新的文献求助10
1秒前
共享精神应助liu采纳,获得10
2秒前
changping应助努力采纳,获得10
2秒前
aqing发布了新的文献求助10
2秒前
3秒前
玛卡粑卡完成签到,获得积分10
4秒前
浮游应助冷傲曼冬采纳,获得10
4秒前
5秒前
彩色菲鹰完成签到,获得积分10
5秒前
6秒前
renzhiqiang发布了新的文献求助30
9秒前
暖色调发布了新的文献求助10
9秒前
10秒前
所所应助凤飞采纳,获得10
10秒前
文艺寄松完成签到,获得积分10
11秒前
幽默科研人完成签到,获得积分10
11秒前
子龙发布了新的文献求助10
11秒前
12秒前
乐乐完成签到,获得积分10
14秒前
忐忑的舞蹈完成签到 ,获得积分10
14秒前
16秒前
小马完成签到,获得积分10
16秒前
冷静未来发布了新的文献求助10
16秒前
Hello应助小蓝人采纳,获得10
16秒前
17秒前
17秒前
深情安青应助司兜采纳,获得30
18秒前
18秒前
小蘑菇应助hh采纳,获得20
18秒前
彭于晏应助子龙采纳,获得10
19秒前
19秒前
H1lb2rt发布了新的文献求助10
20秒前
21秒前
21秒前
orixero应助人间生巧采纳,获得10
22秒前
无情寄真完成签到 ,获得积分10
22秒前
23秒前
如果多年后完成签到,获得积分10
23秒前
华仔应助obito采纳,获得10
23秒前
郗妫完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298643
求助须知:如何正确求助?哪些是违规求助? 4447181
关于积分的说明 13841710
捐赠科研通 4332612
什么是DOI,文献DOI怎么找? 2378257
邀请新用户注册赠送积分活动 1373533
关于科研通互助平台的介绍 1339134