Unsupervised Intrusion Detection System for In-Vehicle Communication Networks

入侵检测系统 计算机科学 人工智能
作者
N Kabilan,Vinayakumar Ravi,V. Sowmya
出处
期刊:Journal of safety science and resilience [Elsevier BV]
标识
DOI:10.1016/j.jnlssr.2023.12.004
摘要

In-vehicle communication has been optimized day to day to keep updated of the technologies. Control area network (CAN) is used as a standard communication method because of its efficient and reliable connection. However, CAN is prone to several network level attacks because of its lack in security mechanisms. Various methods have been introduced to incorporate this in CAN. We proposed an unsupervised method of intrusion detection for in-vehicle communication networks by combining the optimal feature extracting ability of autoencoders and more precise clustering using fuzzy C-means (FCM). The proposed method is light weight and requires less computation time. We performed an extensive experiment and achieved an accuracy of 75.51% with the ML350 in-vehicle intrusion dataset. By experimental result, the proposed method also works better for other intrusion detection problems like wireless intrusion detection datasets such as WNS-DS with accuracy of 84.05% and network intrusion detection datasets such as KDDCup with accuracy 60.63% , UNSW_NB15 with accuracy 73.62% and Information Security Center of Excellence (ISCX) with accuracy 74.83%. Overall, the proposed method outperforms the existing methods and avoids labeled datasets when training an in-vehicle intrusion detection model. The results of the experiment of our proposed method performed on various intrusion detection datasets indicate that the proposed approach is generalized and robust in detecting intrusions and can be effectively deployed in real time to monitor CAN traffic in vehicles and proactively alert during attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HL完成签到,获得积分10
2秒前
wx2360ouc完成签到 ,获得积分10
2秒前
LM完成签到,获得积分20
2秒前
peiqi佩奇发布了新的文献求助10
3秒前
肆_完成签到 ,获得积分10
4秒前
小葡萄完成签到 ,获得积分10
5秒前
5秒前
6秒前
7秒前
10秒前
11秒前
太叔丹翠发布了新的文献求助10
14秒前
hooke完成签到,获得积分10
15秒前
科目三应助peiqi佩奇采纳,获得10
19秒前
简单十三给简单十三的求助进行了留言
19秒前
zrrr完成签到 ,获得积分10
22秒前
22秒前
忙里偷闲发布了新的文献求助10
22秒前
瑞rui完成签到 ,获得积分10
24秒前
kanglan完成签到,获得积分10
24秒前
鸭子完成签到,获得积分10
25秒前
小伊娃应助拉长的凌旋采纳,获得10
26秒前
幽默刺猬完成签到 ,获得积分10
26秒前
勤qin完成签到 ,获得积分10
26秒前
27秒前
lyp发布了新的文献求助10
27秒前
27秒前
28秒前
28秒前
28秒前
复杂的凡梦完成签到,获得积分10
30秒前
深情安青应助CompJIN采纳,获得10
30秒前
sanford完成签到,获得积分10
32秒前
合适冰棍发布了新的文献求助10
32秒前
33秒前
tranphucthinh发布了新的文献求助10
33秒前
MRS发布了新的文献求助10
35秒前
烟花应助lyp采纳,获得10
36秒前
英俊的铭应助合适冰棍采纳,获得10
36秒前
顾矜应助合适冰棍采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Tonal intuitions in "Tristan und Isolde" / by Brian Hyer 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4333724
求助须知:如何正确求助?哪些是违规求助? 3845287
关于积分的说明 12011180
捐赠科研通 3485838
什么是DOI,文献DOI怎么找? 1913423
邀请新用户注册赠送积分活动 956610
科研通“疑难数据库(出版商)”最低求助积分说明 857302