Improved YOLOv8-GD deep learning model for defect detection in electroluminescence images of solar photovoltaic modules

光伏系统 计算机科学 棱锥(几何) 特征(语言学) 人工智能 电致发光 特征提取 卷积(计算机科学) 模式识别(心理学) 领域(数学) 算法 人工神经网络 材料科学 电气工程 纳米技术 图层(电子) 光学 哲学 工程类 物理 纯数学 语言学 数学
作者
Yukang Cao,Dandan Pang,Qianchuan Zhao,Yi Yan,Yongqing Jiang,Chongyi Tian,Fan Wang,Julin Li
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:131: 107866-107866 被引量:39
标识
DOI:10.1016/j.engappai.2024.107866
摘要

Photovoltaic defect detection is an essential aspect of research on building-distributed photovoltaic systems. Existing photovoltaic defect detection models based on deep learning, such as YOLOv5 and YOLOv8, have significantly improved the accuracy of photovoltaic defect detection. However, these models are too large, and their feature extraction ability is insufficient, leading to low detection efficiency and inability to cope with the continuous evolution of defects. Therefore, this study proposes an accurate and lightweight YOLOv8 (You Only Look Once v8) GD algorithm. The algorithm is an improved version of YOLOv8, wherein DW-Conv (DepthWise-Conv) is applied to the YOLOv8 backbone network. Moreover, convolution is replaced with the GSConv (Group-shuffle Conv) and the BiFPN (bidirectional feature pyramid network) structure is added to the architecture. Several electroluminescent photovoltaic defect datasets are used to verify the effectiveness of the proposed method. The final experimental results show that the [email protected] and [email protected]∼0.95 of YOLOv8-GD are 92.8% and 63.1%, respectively, which are 4.2% and 5.7% higher than those of the original algorithm, respectively, and the model volume is reduced by 16.7%. Thus, the proposed algorithm shows considerable potential in the field of photovoltaic defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Lu采纳,获得10
1秒前
obito完成签到,获得积分10
1秒前
科研通AI2S应助挽月白采纳,获得30
2秒前
seannnnnnn发布了新的文献求助10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得30
4秒前
英姑应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
科目三应助wangyup采纳,获得10
4秒前
彭于彦祖应助vivre223采纳,获得10
5秒前
5秒前
科研助手6应助太多采纳,获得10
6秒前
6秒前
燕小冷发布了新的文献求助30
8秒前
星辰大海应助SPRETEND采纳,获得10
8秒前
bkagyin应助范雅寒采纳,获得10
8秒前
duan驳回了华仔应助
9秒前
9秒前
哈哈发布了新的文献求助10
9秒前
小巧怀薇发布了新的文献求助10
10秒前
10秒前
杨旭靖发布了新的文献求助10
11秒前
杀沙湖湾发布了新的文献求助10
12秒前
能干雨竹发布了新的文献求助10
13秒前
accept应助dimples采纳,获得10
13秒前
14秒前
元谷雪发布了新的文献求助10
14秒前
科研通AI5应助风中的南风采纳,获得10
14秒前
15秒前
16秒前
16秒前
sun发布了新的文献求助10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790732
求助须知:如何正确求助?哪些是违规求助? 3335665
关于积分的说明 10275882
捐赠科研通 3052153
什么是DOI,文献DOI怎么找? 1675026
邀请新用户注册赠送积分活动 803023
科研通“疑难数据库(出版商)”最低求助积分说明 761007