Improved YOLOv8-GD deep learning model for defect detection in electroluminescence images of solar photovoltaic modules

光伏系统 计算机科学 棱锥(几何) 特征(语言学) 人工智能 电致发光 特征提取 卷积(计算机科学) 模式识别(心理学) 领域(数学) 算法 人工神经网络 材料科学 电气工程 纳米技术 图层(电子) 光学 哲学 工程类 物理 纯数学 语言学 数学
作者
Yukang Cao,Dandan Pang,Qianchuan Zhao,Yi Yan,Yongqing Jiang,Chongyi Tian,Fan Wang,Julin Li
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:131: 107866-107866 被引量:39
标识
DOI:10.1016/j.engappai.2024.107866
摘要

Photovoltaic defect detection is an essential aspect of research on building-distributed photovoltaic systems. Existing photovoltaic defect detection models based on deep learning, such as YOLOv5 and YOLOv8, have significantly improved the accuracy of photovoltaic defect detection. However, these models are too large, and their feature extraction ability is insufficient, leading to low detection efficiency and inability to cope with the continuous evolution of defects. Therefore, this study proposes an accurate and lightweight YOLOv8 (You Only Look Once v8) GD algorithm. The algorithm is an improved version of YOLOv8, wherein DW-Conv (DepthWise-Conv) is applied to the YOLOv8 backbone network. Moreover, convolution is replaced with the GSConv (Group-shuffle Conv) and the BiFPN (bidirectional feature pyramid network) structure is added to the architecture. Several electroluminescent photovoltaic defect datasets are used to verify the effectiveness of the proposed method. The final experimental results show that the [email protected] and [email protected]∼0.95 of YOLOv8-GD are 92.8% and 63.1%, respectively, which are 4.2% and 5.7% higher than those of the original algorithm, respectively, and the model volume is reduced by 16.7%. Thus, the proposed algorithm shows considerable potential in the field of photovoltaic defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助lwzx采纳,获得10
刚刚
脑洞疼应助lwzx采纳,获得10
刚刚
桐桐应助lwzx采纳,获得10
刚刚
刚刚
lll应助lwzx采纳,获得10
刚刚
乐乐应助lwzx采纳,获得10
刚刚
斯文败类应助lwzx采纳,获得10
刚刚
wanci应助lwzx采纳,获得10
刚刚
Xiaoxiao应助lwzx采纳,获得10
刚刚
小蘑菇应助lwzx采纳,获得10
刚刚
飘逸果汁完成签到,获得积分10
刚刚
Ymir驳回了慕青应助
1秒前
威武鞅发布了新的文献求助10
1秒前
杰尼龟完成签到,获得积分10
2秒前
扬嘉諵发布了新的文献求助10
2秒前
3秒前
研友_VZG7GZ应助zxn采纳,获得100
3秒前
3秒前
3秒前
luyuqiu完成签到,获得积分10
3秒前
Cholera完成签到,获得积分10
4秒前
Sharon发布了新的文献求助10
4秒前
Satellites完成签到,获得积分10
4秒前
Prozac完成签到,获得积分10
5秒前
没天赋发布了新的文献求助10
5秒前
坤坤完成签到,获得积分10
6秒前
田様应助ichris采纳,获得10
6秒前
星星完成签到,获得积分10
6秒前
7秒前
自然起眸完成签到,获得积分10
8秒前
忐忑的远山应助柒柒采纳,获得10
8秒前
等你 下课发布了新的文献求助10
9秒前
10秒前
星辰大海应助Silvia采纳,获得10
10秒前
CHAIZH发布了新的文献求助10
10秒前
皮皮发布了新的文献求助30
11秒前
123444发布了新的文献求助20
12秒前
12秒前
12秒前
12秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4049130
求助须知:如何正确求助?哪些是违规求助? 3586997
关于积分的说明 11398270
捐赠科研通 3313607
什么是DOI,文献DOI怎么找? 1822891
邀请新用户注册赠送积分活动 894833
科研通“疑难数据库(出版商)”最低求助积分说明 816553