How to Control Waste Incineration Pollution? Cost-Sharing or Penalty Mechanism—Based on Two Differential Game Models

焚化 微分博弈 机制(生物学) 污染 博弈论 控制(管理) 经济 惩罚法 计算机科学 数学优化 微观经济学 环境科学 废物管理 数学 工程类 人工智能 生态学 哲学 认识论 生物
作者
Huijie Li,Deqing Tan
出处
期刊:Decision Analysis [Institute for Operations Research and the Management Sciences]
卷期号:21 (2): 91-109 被引量:3
标识
DOI:10.1287/deca.2023.0078
摘要

This study explores whether the government should implement a cost-sharing or penalty mechanism to control waste incineration pollution and investigates which policy can best incentivize incineration plants to invest in pollution control. We design two differential game models, one based on a cost-sharing approach and one on a penalty system, to model the interactions between the government and incineration plants. We then compare and analyze the equilibrium outcomes in both scenarios. Our findings reveal that when incineration pollution significantly impacts the government, both the cost-sharing and penalty mechanisms are effective in stimulating incineration plants to enhance their pollution control efforts. However, when incineration pollution significantly affects the incineration plants themselves, the cost-sharing mechanism proves to be more effective in terms of pollution control. Furthermore, we find that the government derives greater utility under the cost-sharing mechanism compared with the penalty mechanism, especially as the amount of municipal solid waste (MSW) increases. In contrast, incineration plants tend to generate higher profits under the cost-sharing mechanism. These findings and their accompanying managerial implications may provide valuable guidance for government agencies in formulating policies to manage incineration pollution and encourage waste incineration plants to invest in improving their pollution control systems. Funding: This work was supported by the National Natural Science Foundation of China [Grant 71571149], Humanities and Social Sciences Foundation for Youth Scholars of Ministry of Education of China [Grant 22YJC630171], and Natural Science Foundation of Sichuan Province of China [Grant 2023NSFSC1055].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
那那发布了新的文献求助10
1秒前
小蘑菇应助feng采纳,获得10
2秒前
豆浆油条完成签到 ,获得积分10
2秒前
李健的小迷弟应助芳芳采纳,获得10
3秒前
嘤嘤嘤发布了新的文献求助10
3秒前
4秒前
ljlbest1984发布了新的文献求助10
4秒前
4秒前
大模型应助11采纳,获得10
6秒前
石友瑶完成签到,获得积分10
7秒前
科研通AI5应助纯白采纳,获得10
8秒前
10秒前
大饼卷肉发布了新的文献求助10
10秒前
SYLH应助刘刘采纳,获得30
13秒前
ljlbest1984完成签到,获得积分10
13秒前
CHOW完成签到,获得积分10
14秒前
DF完成签到 ,获得积分10
15秒前
16秒前
16秒前
balmy完成签到 ,获得积分10
16秒前
懦弱的咖啡豆完成签到,获得积分10
16秒前
17秒前
纯白完成签到,获得积分20
19秒前
yaya小气猫发布了新的文献求助10
20秒前
wanci应助丰富的小甜瓜采纳,获得10
21秒前
纯白发布了新的文献求助10
22秒前
那那发布了新的文献求助10
22秒前
11发布了新的文献求助10
24秒前
嘤嘤嘤完成签到,获得积分10
27秒前
隐形曼青应助zzw54188采纳,获得30
27秒前
29秒前
29秒前
FashionBoy应助长安心动明月采纳,获得10
29秒前
31秒前
31秒前
香蕉觅云应助asdfks采纳,获得10
31秒前
31秒前
34秒前
石友瑶发布了新的文献求助10
35秒前
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784064
求助须知:如何正确求助?哪些是违规求助? 3329170
关于积分的说明 10240457
捐赠科研通 3044703
什么是DOI,文献DOI怎么找? 1671219
邀请新用户注册赠送积分活动 800189
科研通“疑难数据库(出版商)”最低求助积分说明 759213