A hybrid deep learning model based on parallel architecture TCN-LSTM with Savitzky-Golay filter for wind power prediction

二进制戈莱码 深度学习 人工智能 滤波器(信号处理) 建筑 功率(物理) 计算机科学 算法 物理 地理 计算机视觉 考古 量子力学
作者
Shujun Liu,Tong Xu,Xiaoze Du,Yaocong Zhang,Jiangbo Wu
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:302: 118122-118122 被引量:32
标识
DOI:10.1016/j.enconman.2024.118122
摘要

Wind energy is experiencing rapid global growth. However, wind power generation time series data often exhibit nonlinear and non-stationary characteristics, which make precise estimation challenging. Consequently, wind power prediction assumes an increasingly vital role in the planning and deployment of power and energy systems. Recently, many hybrid deep learning prediction models have been developed to improve the prediction performance of wind power, but their deeper network layer and complex structure also bring higher computing costs and reduced prediction efficiency. In order to achieve higher prediction performance, reduce the complexity and computational cost of hybrid deep learning models, and improve prediction efficiency, this study proposed a hybrid deep learning model based on parallel architecture by using a tensor concatenate module to combine a temporal convolution network (TCN) and a long short-term memory (LSTM) neural network for wind power prediction, and the Savitzky-Golay (SG) filter is used to remove noise and smooth the input wind speed time series in the model training stage. Using a wind turbine case from Turkey, three sets of comparison experiments are conducted. The effectiveness and superiority of the proposed model are validated by comparing a variety of single and hybrid models using current evaluation metrics and the Diebold-Mariano test. Among them, the number of training parameters and computing time of the proposed parallel architecture TCN-LSTM hybrid model are reduced by 6.59% and 25.82%, respectively, when compared to the conventional TCN-LSTM hybrid model with the same hyperparameter settings. nMAE, nMSE, and nRMSE are reduced by 2.00%, 9.21%, and 4.74%, respectively. The Diebold-Mariano test results also reveal that the proposed model performed better in terms of prediction performance. Moreover, the proposed innovative architecture hybrid model provides a novel approach to developing a hybrid model of deep learning networks for wind power prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娜娜发布了新的文献求助10
1秒前
4秒前
5秒前
科研通AI2S应助忧郁难胜采纳,获得10
6秒前
寒冷寒安完成签到,获得积分20
7秒前
夏秋完成签到 ,获得积分10
8秒前
LYW完成签到,获得积分10
8秒前
wiki发布了新的文献求助10
9秒前
11秒前
硫化铅应助马李啸采纳,获得10
13秒前
14秒前
赘婿应助cheng采纳,获得10
14秒前
京京发布了新的文献求助10
14秒前
15秒前
赘婿应助lxr2采纳,获得20
15秒前
ashore完成签到,获得积分10
16秒前
17秒前
17秒前
Lulu完成签到,获得积分10
18秒前
科研通AI2S应助南宫采纳,获得10
20秒前
于芋菊给温暖囧的求助进行了留言
21秒前
21秒前
Wang发布了新的文献求助10
21秒前
研友_VZG7GZ应助Hazel采纳,获得10
22秒前
22秒前
Lulu发布了新的文献求助10
22秒前
123完成签到,获得积分10
23秒前
小奋青完成签到 ,获得积分10
24秒前
25秒前
张起灵发布了新的文献求助10
25秒前
汉堡包应助舒适路人采纳,获得10
26秒前
26秒前
liangchenglvliao完成签到 ,获得积分10
27秒前
小二郎应助一念初见采纳,获得10
29秒前
29秒前
点点滴滴发布了新的文献求助10
30秒前
cheng发布了新的文献求助10
30秒前
30秒前
32秒前
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784436
求助须知:如何正确求助?哪些是违规求助? 3329565
关于积分的说明 10242565
捐赠科研通 3044992
什么是DOI,文献DOI怎么找? 1671494
邀请新用户注册赠送积分活动 800371
科研通“疑难数据库(出版商)”最低求助积分说明 759391