Precise Discrimination for Multiple Etiologies of Dementia Cases Based on Deep Learning with Electroencephalography

痴呆 病因学 脑电图 医学 听力学 心理学 精神科 认知心理学 内科学 神经科学 疾病
作者
Masahiro Hata,Yusuke Watanabe,Takumi Tanaka,Kimihisa Awata,Yuki Miyazaki,Ryohei Fukuma,Daiki Taomoto,Yuto Satake,Takashi Suehiro,Hideki Kanemoto,Kenji Yoshiyama,Masao Iwase,Shunichiro Ikeda,Keiichiro Nishida,Yoshiteru Takekita,Masafumi Yoshimura,Ryouhei Ishii,Hiroaki Kazui,Tatsuya Harada,Haruhiko Kishima
出处
期刊:Neuropsychobiology [Karger Publishers]
卷期号:82 (2): 81-90 被引量:8
标识
DOI:10.1159/000528439
摘要

It is critical to develop accurate and universally available biomarkers for dementia diseases to appropriately deal with the dementia problems under world-wide rapid increasing of patients with dementia. In this sense, electroencephalography (EEG) has been utilized as a promising examination to screen and assist in diagnosing dementia, with advantages of sensitiveness to neural functions, inexpensiveness, and high availability. Moreover, the algorithm-based deep learning can expand EEG applicability, yielding accurate and automatic classification easily applied even in general hospitals without any research specialist.We utilized a novel deep neural network, with which high accuracy of discrimination was archived in neurological disorders in the previous study. Based on this network, we analyzed EEG data of healthy volunteers (HVs, N = 55), patients with Alzheimer's disease (AD, N = 101), dementia with Lewy bodies (DLB, N = 75), and idiopathic normal pressure hydrocephalus (iNPH, N = 60) to evaluate the discriminative accuracy of these diseases.High discriminative accuracies were archived between HV and patients with dementia, yielding 81.7% (vs. AD), 93.9% (vs. DLB), 93.1% (vs. iNPH), and 87.7% (vs. AD, DLB, and iNPH).This study revealed that the EEG data of patients with dementia were successfully discriminated from HVs based on a novel deep learning algorithm, which could be useful for automatic screening and assisting diagnosis of dementia diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘国建郭菱香完成签到 ,获得积分10
1秒前
火火完成签到,获得积分10
1秒前
岁岁完成签到 ,获得积分10
1秒前
2秒前
无花果应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
2秒前
iNk应助科研通管家采纳,获得20
2秒前
Ava应助科研通管家采纳,获得30
2秒前
Jasper应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
gao_yiyi应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得20
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
4秒前
Hello应助科研通管家采纳,获得10
4秒前
十八完成签到 ,获得积分10
5秒前
6秒前
灵巧越泽发布了新的文献求助10
7秒前
9秒前
dadad完成签到,获得积分10
10秒前
YY完成签到,获得积分10
10秒前
充电宝应助一个小胖子采纳,获得10
10秒前
合适冰棍完成签到 ,获得积分10
11秒前
顾矜应助闪闪雅阳采纳,获得10
13秒前
GGY完成签到 ,获得积分10
14秒前
14秒前
尊敬的发夹完成签到,获得积分10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777801
求助须知:如何正确求助?哪些是违规求助? 3323321
关于积分的说明 10213817
捐赠科研通 3038554
什么是DOI,文献DOI怎么找? 1667549
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758275