A novel measure of cardiopulmonary coupling during sleep based on the synchrosqueezing transform algorithm

光谱图 计算机科学 模式识别(心理学) 小波变换 人工智能 睡眠呼吸暂停 算法 标准差 噪音(视频) 小波 语音识别 数学 医学 统计 心脏病学 图像(数学)
作者
Yining Wang,Wenbin Shi,Chien-Hung Yeh
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:14
标识
DOI:10.1109/jbhi.2023.3237690
摘要

This paper presents a novel method to quantify cardiopulmonary dynamics for automatic sleep apnea detection by integrating the synchrosqueezing transform (SST) algorithm with the standard cardiopulmonary coupling (CPC) method.Simulated data were designed to validate the reliability of the proposed method, with varying levels of signal bandwidth and noise contamination. Real data were collected from the Physionet sleep apnea database, consisting of 70 single-lead ECGs with expert-labeled apnea annotations on a minute-by-minute basis. Three different signal processing techniques applied to sinus interbeat interval and respiratory time series include short-time Fourier transform, continuous Wavelet transform, and synchrosqueezing transform, respectively. Subsequently, the CPC index was computed to construct sleep spectrograms. Features derived from such spectrogram were used as input to five machine- learning-based classifiers including decision trees, support vector machines, k-nearest neighbors, etc. Results: The simulation results showed that the SST-CPC method is robust to both noise level and signal bandwidth, outperforming Fourier-based and Wavelet-based approaches. Meanwhile, the SST-CPC spectrogram exhibited relatively explicit temporal-frequency biomarkers compared with the rest. Furthermore, by integrating SST-CPC features with common-used heart rate and respiratory features, accuracies for per-minute apnea detection improved from 72% to 83%, validating the added value of CPC biomarkers in sleep apnea detection.The SST-CPC method improves the accuracy of automatic sleep apnea detection and presents comparable performances with those automated algorithms reported in the literature.The proposed SST-CPC method enhances sleep diagnostic capabilities, and may serve as a complementary tool to the routine diagnosis of sleep respiratory events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助秋子采纳,获得10
刚刚
刚刚
雪糕刺客完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
小孩儿关注了科研通微信公众号
2秒前
科研通AI5应助123采纳,获得10
2秒前
ANNI发布了新的文献求助10
3秒前
Zhlili完成签到,获得积分10
3秒前
Ffan完成签到 ,获得积分10
3秒前
zjb发布了新的文献求助10
3秒前
3秒前
ZiJay完成签到,获得积分10
4秒前
Hu发布了新的文献求助10
4秒前
www完成签到,获得积分10
4秒前
雪糕刺客发布了新的文献求助10
4秒前
乐瑶发布了新的文献求助30
4秒前
细腻的荟完成签到,获得积分10
4秒前
PPRer完成签到,获得积分10
5秒前
bkagyin应助拓跋涵易采纳,获得10
5秒前
abab完成签到,获得积分10
5秒前
5秒前
果汁有点甜完成签到,获得积分10
6秒前
dava完成签到,获得积分10
6秒前
小马驹发布了新的文献求助10
6秒前
Blank完成签到 ,获得积分10
6秒前
丘比特应助槿落采纳,获得10
6秒前
Akim应助闻元杰采纳,获得10
6秒前
6秒前
小李李完成签到 ,获得积分10
6秒前
7秒前
qpisuo发布了新的文献求助10
7秒前
zzzq发布了新的文献求助10
7秒前
7秒前
大个应助孝顺的青筠采纳,获得30
7秒前
8秒前
可耐的紫夏给可耐的紫夏的求助进行了留言
8秒前
zzz6286发布了新的文献求助10
8秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808655
求助须知:如何正确求助?哪些是违规求助? 3353413
关于积分的说明 10365062
捐赠科研通 3069602
什么是DOI,文献DOI怎么找? 1685698
邀请新用户注册赠送积分活动 810656
科研通“疑难数据库(出版商)”最低求助积分说明 766240