Unobtrusive Human Fall Detection System Using mmWave Radar and Data Driven Methods

人工智能 雷达 计算机科学 支持向量机 卷积神经网络 人口 随机森林 机器学习 电信 人口学 社会学
作者
Ariyamehr Rezaei,Alessandro Mascheroni,Michael C. Stevens,Ahmadreza Argha,Michela Papandrea,Alessandro Puiatti,Nigel H. Lovell
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (7): 7968-7976 被引量:2
标识
DOI:10.1109/jsen.2023.3245063
摘要

As the population ages, health issues like injurious falls demand more attention. One solution is to use wearable devices to detect falls. Nevertheless, most of these devices raise obtrusiveness, and older people generally resist or might forget to wear them. The millimeter-wave (mmWave) radar technology was used in this study to unobtrusively detect human falls. Data were collected from healthy young volunteers with the radar mounted on the side wall (trial 1) or overhead (trial 2) of an experimental room. A set of features were manually extracted from the data point clouds; then, multilayer perceptron (MLP), random forest (RF), ${k}$ -nearest neighbor (KNN), and support vector machine (SVM) classifiers were applied on the features. Additionally, we devised a convolutional neural network (CNN)-based deep learning model for the underlying fall detection problem that receives a 3-D representation of the point cloud data, known as occupancy grid, as the input. The optimal installation position of the radar sensor was unknown. Therefore, the sensor was mounted on side wall and on the ceiling of the room to allow the performance comparison between these sensor placements. RF classifier achieved the best results in trial 2 (an accuracy of 92.2%, a recall of 0.881, a precision of 0.805, and an ${F}1$ -score of 0.841), and the proposed CNN model achieved slightly better results comparing to the RF method in trial 2 (an accuracy of 92.3%, a recall of 0.891, a precision of 0.801, and an ${F}1$ -score of 0.844). These results suggest that the development of an unobtrusive monitoring system for fall detection using mmWave radar is feasible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小熊66618发布了新的文献求助10
刚刚
1秒前
背后中心完成签到,获得积分10
1秒前
1秒前
2秒前
登山人发布了新的文献求助10
3秒前
两是ssyycc发布了新的文献求助10
5秒前
afrex发布了新的文献求助30
7秒前
天天开心完成签到 ,获得积分10
7秒前
彭于晏应助轩子墨采纳,获得10
8秒前
gloval完成签到,获得积分10
9秒前
科研通AI5应助小旺仔采纳,获得10
10秒前
耗子侠完成签到,获得积分10
12秒前
倒立才能看文献完成签到,获得积分10
12秒前
13秒前
13秒前
你好这位仁兄完成签到,获得积分10
15秒前
Tiwiiw完成签到 ,获得积分10
16秒前
16秒前
19秒前
19秒前
登山人发布了新的文献求助10
20秒前
22秒前
23秒前
一叶扁舟完成签到,获得积分10
23秒前
尘扬发布了新的文献求助10
24秒前
探讨发布了新的文献求助10
24秒前
26秒前
科研通AI5应助地表飞猪采纳,获得10
27秒前
28秒前
29秒前
gudu完成签到,获得积分10
29秒前
传奇3应助登山人采纳,获得10
29秒前
WSND完成签到,获得积分10
29秒前
30秒前
在水一方应助探讨采纳,获得10
31秒前
传奇3应助gfbh采纳,获得10
31秒前
Anna完成签到,获得积分10
33秒前
33秒前
赘婿应助WSND采纳,获得10
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789463
求助须知:如何正确求助?哪些是违规求助? 3334462
关于积分的说明 10270181
捐赠科研通 3050926
什么是DOI,文献DOI怎么找? 1674234
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742