Facial Expression Recognition on the High Aggregation Subgraphs

嵌入 计算机科学 卷积神经网络 模式识别(心理学) 图形 人工智能 顶点(图论) 面部表情 面部识别系统 理论计算机科学
作者
Tong Liu,Jing Li,Jia Wu,Bo Du,Jun Chang,Yi Liu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 3732-3745 被引量:2
标识
DOI:10.1109/tip.2023.3290520
摘要

With the development of deep learning technology, the performance of facial expression recognition (FER) has been significantly improved. The current main challenge comes from the confusion of facial expressions caused by the highly nonlinear changes of facial expressions. However, the existing FER methods based on Convolutional Neural Networks (CNN) often ignore the underlying relationship between expressions which is crucial to meliorate the performance of recognition for confusable expressions. And the methods based on Graph Convolutional Networks (GCN) can capture the relationship between vertices, but the aggregation degree of subgraphs generated by these methods is low. They are easy to include unconfident neighbors, which increases the learning difficulty of the network. To solve the above problems, this paper proposes a method to recognize facial expressions on the high aggregation subgraphs (HASs) by combing the advantages of CNN extracting features and GCN modeling complex graph patterns. Specifically, we formulate FER as a vertex prediction problem. Considering the importance of high-order neighbors and higher efficiency, we utilize vertex confidence to find high-order neighbors. Then we construct the HASs based on the top embedding features of these high-order neighbors. And we utilize the GCN to perform reasoning and infer the class of vertices for HASs without a large number of overlapping subgraphs. Our method captures the underlying relationship between expressions on the HASs and improves the accuracy and efficiency of FER. Experimental results on both the in-the-lab datasets and the in-the-wild datasets show that our method achieves higher recognition accuracy than several state-of-the-art methods. This highlights the benefit of the underlying relationship between expressions for FER.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
奋斗的元珊完成签到,获得积分10
1秒前
1秒前
Owen应助高兴白莲采纳,获得10
1秒前
LA完成签到,获得积分10
1秒前
孔大漂亮完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
Quinta发布了新的文献求助10
3秒前
3秒前
vikoel发布了新的文献求助10
4秒前
ddong发布了新的文献求助10
4秒前
4秒前
uuu发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
xu发布了新的文献求助10
6秒前
Cassie发布了新的文献求助30
7秒前
tcf发布了新的文献求助10
7秒前
xiaoE完成签到,获得积分10
8秒前
晨曦完成签到,获得积分10
8秒前
狂野砖头完成签到,获得积分10
9秒前
9秒前
9秒前
白风发布了新的文献求助10
10秒前
拼搏飞柏发布了新的文献求助10
10秒前
11秒前
11秒前
单纯行天发布了新的文献求助10
11秒前
星辰大海应助不准吃烤肉采纳,获得10
11秒前
13秒前
13秒前
14秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4478140
求助须知:如何正确求助?哪些是违规求助? 3935666
关于积分的说明 12210104
捐赠科研通 3590433
什么是DOI,文献DOI怎么找? 1974254
邀请新用户注册赠送积分活动 1011591
科研通“疑难数据库(出版商)”最低求助积分说明 905115