Reduced Order Machine Learning Models for Accurate Prediction of CO2 Capture in Physical Solvents

主成分回归 交叉验证 主成分分析 均方误差 超参数优化 计算机科学 一致性(知识库) 支持向量机 机器学习 数学 人工智能 统计
作者
Vazida Mehtab,Shadab Alam,Sangeetha Povari,Lingaiah Nakka,Yarasi Soujanya,Sumana Chenna
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (46): 18091-18103 被引量:8
标识
DOI:10.1021/acs.est.3c00372
摘要

CO2 sorption in physical solvents is one of the promising approaches for carbon capture from highly concentrated CO2 streams at high pressures. Identifying an efficient solvent and evaluating its solubility data at different operating conditions are highly essential for effective capture, which generally involves expensive and time-consuming experimental procedures. This work presents a machine learning based ultrafast alternative for accurate prediction of CO2 solubility in physical solvents using their physical, thermodynamic, and structural properties data. First, a database is established with which several linear, nonlinear, and ensemble models were trained through a systematic cross-validation and grid search method and found that kernel ridge regression (KRR) is the optimum model. Second, the descriptors are ranked based on their complete decomposition contributions derived using principal component analysis. Further, optimum key descriptors (KDs) are evaluated through an iterative sequential addition method with the objective of maximizing the prediction accuracy of the reduced order KRR (r-KRR) model. Finally, the study resulted in the r-KRR model with nine KDs exhibiting the highest prediction accuracy with a minimum root-mean-square error (0.0023), mean absolute error (0.0016), and maximum R2 (0.999). Also, the validity of the database created and ML models developed is ensured through detailed statistical analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邵云发布了新的文献求助10
刚刚
羞涩的寒松完成签到,获得积分20
1秒前
2秒前
2秒前
哈哈完成签到,获得积分10
2秒前
2秒前
烽烽烽发布了新的文献求助10
3秒前
情怀应助JJJ采纳,获得10
3秒前
何相逢应助Kiki采纳,获得10
4秒前
4秒前
小蘑菇应助优秀井采纳,获得10
5秒前
liuzhm发布了新的文献求助10
5秒前
古月应助辰寒云阳采纳,获得10
5秒前
ANmin发布了新的文献求助10
6秒前
翟恒禹发布了新的文献求助10
6秒前
YY本Y应助科研通管家采纳,获得20
6秒前
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
利利发布了新的文献求助30
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得30
7秒前
潘pan完成签到,获得积分10
7秒前
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
核桃大王应助科研通管家采纳,获得10
7秒前
核桃大王应助科研通管家采纳,获得10
7秒前
核桃大王应助科研通管家采纳,获得10
7秒前
核桃大王应助科研通管家采纳,获得10
7秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4063856
求助须知:如何正确求助?哪些是违规求助? 3602290
关于积分的说明 11440705
捐赠科研通 3325417
什么是DOI,文献DOI怎么找? 1828098
邀请新用户注册赠送积分活动 898566
科研通“疑难数据库(出版商)”最低求助积分说明 819103