亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Iterative Training Sample Augmentation for Enhancing Land Cover Change Detection Performance With Deep Learning Neural Network

计算机科学 人工神经网络 人工智能 样品(材料) 深度学习 块(置换群论) 相似性(几何) 机器学习 变更检测 模式识别(心理学) 图像(数学) 数学 几何学 色谱法 化学
作者
Zhiyong Lv,Haitao Huang,Weiwei Sun,Meng Jia,Jón Atli Benediktsson,Fengrui Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 15128-15141 被引量:45
标识
DOI:10.1109/tnnls.2023.3282935
摘要

Labeled samples are important in achieving land cover change detection (LCCD) tasks via deep learning techniques with remote sensing images. However, labeling samples for change detection with bitemporal remote sensing images is labor-intensive and time-consuming. Moreover, manually labeling samples between bitemporal images requires professional knowledge for practitioners. To address this problem in this article, an iterative training sample augmentation (ITSA) strategy to couple with a deep learning neural network for improving LCCD performance is proposed here. In the proposed ITSA, we start by measuring the similarity between an initial sample and its four-quarter-overlapped neighboring blocks. If the similarity satisfies a predefined constraint, then a neighboring block will be selected as the potential sample. Next, a neural network is trained with renewed samples and used to predict an intermediate result. Finally, these operations are fused into an iterative algorithm to achieve the training and prediction of a neural network. The performance of the proposed ITSA strategy is verified with some widely used change detection deep learning networks using seven pairs of real remote sensing images. The excellent visual performance and quantitative comparisons from the experiments clearly indicate that detection accuracies of LCCD can be effectively improved when a deep learning network is coupled with the proposed ITSA. For example, compared with some state-of-the-art methods, the quantitative improvement is 0.38%–7.53% in terms of overall accuracy. Moreover, the improvement is robust, generic to both homogeneous and heterogeneous images, and universally adaptive to various neural networks of LCCD. The code will be available at https://github.com/ImgSciGroup/ITSA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助APEACH采纳,获得10
17秒前
量子星尘发布了新的文献求助10
21秒前
24秒前
赘婿应助科研通管家采纳,获得10
26秒前
29秒前
APEACH发布了新的文献求助10
29秒前
35秒前
夏荷狸发布了新的文献求助10
36秒前
Jasmine完成签到 ,获得积分10
55秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
谭日东关注了科研通微信公众号
1分钟前
2分钟前
2分钟前
2分钟前
谭日东发布了新的文献求助10
2分钟前
2分钟前
2分钟前
归尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
Hermionezj发布了新的文献求助10
3分钟前
桐桐应助合适的小海豚采纳,获得10
3分钟前
3分钟前
杏子应助Hermionezj采纳,获得100
3分钟前
3分钟前
3分钟前
风趣的敏发布了新的文献求助10
3分钟前
JamesPei应助谭日东采纳,获得10
3分钟前
3分钟前
郭俊秀完成签到 ,获得积分10
3分钟前
归尘发布了新的文献求助10
3分钟前
深情安青应助杨惠子采纳,获得10
4分钟前
奈布完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
杨惠子发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Immigrant Incorporation in East Asian Democracies 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3972777
求助须知:如何正确求助?哪些是违规求助? 3517093
关于积分的说明 11186157
捐赠科研通 3252557
什么是DOI,文献DOI怎么找? 1796544
邀请新用户注册赠送积分活动 876487
科研通“疑难数据库(出版商)”最低求助积分说明 805681