Frost-resistance prediction model for stress-damaged lightweight aggregate concrete based on BPNN: a comparative study

霜冻(温度) 骨料(复合) 环境科学 结构工程 使用寿命 岩土工程 材料科学 计算机科学 工程类 复合材料
作者
Chun Lin Fu,Qiushi Zhang
出处
期刊:Materials research express [IOP Publishing]
卷期号:11 (8): 085513-085513
标识
DOI:10.1088/2053-1591/ad719b
摘要

Abstract With the depletion of natural resources and the requirement of higher strength-weight ratio, lightweight aggregate concrete has attracted more and more attention because of its good thermal properties, fire resistance and seismic performance. However, exposure to low temperature environments accelerates deterioration of concrete, thereby, reduce the service life of lightweight aggregate concrete. Even worse, in cold and arid regions, lightweight aggregate concrete often experiences accidental impacts, wind erosion, earthquakes, and other disasters during service, these damage significantly impact its frost-resistance. Therefore, accurately and quantitatively describing and predicting the frost-resistance of lightweight aggregate concrete under specific disaster conditions is crucial. In this study, take the initial damage degree and freeze-thaw cycles as input variables, while the relative dynamic elastic modulus (RDEM) as an out variable, a frost resistance prediction models for stress-damaged lightweight aggregate concrete was established based on back propagation neural network (BPNN). The results show that the predicted values of BPNN model are in good agreement with the experimental values, and the results are also compared with the revised Loland model which is proposed by another author. Results demonstrate that the average relative error between predicted values of BPNN and experimental values is only 1.69%, whereas the one of revised Loland model is 9.13%, which indicating that the proposed BPNN prediction model can achieve a relatively accurate quantitative assessment of frost-resistance throughout the entire post-disaster lifecycle of lightweight aggregate concrete, it also broadened the idea and provided a reference for the frost resistance prediction of stress-damaged lightweight aggregate concrete.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
youda完成签到 ,获得积分10
2秒前
3秒前
不安网络发布了新的文献求助10
3秒前
Catalina_S应助光亮长颈鹿采纳,获得10
4秒前
4秒前
海盐气泡水完成签到,获得积分10
5秒前
5秒前
6秒前
喝橙汁儿吗完成签到 ,获得积分10
7秒前
Hyunstar完成签到,获得积分10
7秒前
王卫应助1000采纳,获得10
9秒前
9秒前
拓木幸子完成签到,获得积分10
10秒前
日月归尘发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助20
11秒前
Light发布了新的文献求助10
11秒前
接q辣舞发布了新的文献求助10
11秒前
liuyiliuyi发布了新的文献求助10
12秒前
warithy发布了新的文献求助10
13秒前
15秒前
15秒前
eric888应助圆锥香蕉采纳,获得200
15秒前
浮游应助金蕊采纳,获得10
17秒前
18秒前
求助人员发布了新的文献求助20
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
18秒前
慕青应助日月归尘采纳,获得10
18秒前
wanci应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
缥缈的玉米完成签到,获得积分10
19秒前
李健应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
欣慰元蝶应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5556163
求助须知:如何正确求助?哪些是违规求助? 4640783
关于积分的说明 14662947
捐赠科研通 4582797
什么是DOI,文献DOI怎么找? 2513629
邀请新用户注册赠送积分活动 1488235
关于科研通互助平台的介绍 1459006