清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

The first step is the hardest: pitfalls of representing and tokenizing temporal data for large language models

计算机科学 自然语言处理 数据科学 人工智能
作者
Dimitris Spathis,Fahim Kawsar
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:31 (9): 2151-2158 被引量:12
标识
DOI:10.1093/jamia/ocae090
摘要

Abstract Objectives Large language models (LLMs) have demonstrated remarkable generalization and across diverse tasks, leading individuals to increasingly use them as personal assistants due to their emerging reasoning capabilities. Nevertheless, a notable obstacle emerges when including numerical/temporal data into these prompts, such as data sourced from wearables or electronic health records. LLMs employ tokenizers in their input that break down text into smaller units. However, tokenizers are not designed to represent numerical values and might struggle to understand repetitive patterns and context, treating consecutive values as separate tokens and disregarding their temporal relationships. This article discusses the challenges of representing and tokenizing temporal data. It argues that naively passing timeseries to LLMs can be ineffective due to the modality gap between numbers and text. Materials and methods We conduct a case study by tokenizing a sample mobile sensing dataset using the OpenAI tokenizer. We also review recent works that feed timeseries data into LLMs for human-centric tasks, outlining common experimental setups like zero-shot prompting and few-shot learning. Results The case study shows that popular LLMs split timestamps and sensor values into multiple nonmeaningful tokens, indicating they struggle with temporal data. We find that preliminary works rely heavily on prompt engineering and timeseries aggregation to “ground” LLMs, hinting that the “modality gap” hampers progress. The literature was critically analyzed through the lens of models optimizing for expressiveness versus parameter efficiency. On one end of the spectrum, training large domain-specific models from scratch is expressive but not parameter-efficient. On the other end, zero-shot prompting of LLMs is parameter-efficient but lacks expressiveness for temporal data. Discussion We argue tokenizers are not optimized for numerical data, while the scarcity of timeseries examples in training corpora exacerbates difficulties. We advocate balancing model expressiveness and computational efficiency when integrating temporal data. Prompt tuning, model grafting, and improved tokenizers are highlighted as promising directions. Conclusion We underscore that despite promising capabilities, LLMs cannot meaningfully process temporal data unless the input representation is addressed. We argue that this paradigm shift in how we leverage pretrained models will particularly affect the area of biomedical signals, given the lack of modality-specific foundation models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助丽丽采纳,获得10
2秒前
徐团伟完成签到 ,获得积分10
3秒前
毛毛完成签到,获得积分10
5秒前
TY完成签到 ,获得积分10
20秒前
bo完成签到 ,获得积分10
22秒前
张平一完成签到 ,获得积分10
23秒前
33秒前
Lyn完成签到 ,获得积分10
33秒前
check003完成签到,获得积分10
35秒前
foyefeng完成签到,获得积分10
36秒前
38秒前
40秒前
予秋发布了新的文献求助10
42秒前
CodeCraft应助科研通管家采纳,获得10
43秒前
豆豆发布了新的文献求助10
43秒前
隐形曼青应助xun采纳,获得10
46秒前
qmy完成签到 ,获得积分10
46秒前
贪玩的网络完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
花誓lydia完成签到 ,获得积分10
1分钟前
xun发布了新的文献求助10
1分钟前
含蓄薯片完成签到 ,获得积分10
1分钟前
1分钟前
华仔应助xun采纳,获得10
1分钟前
luobote完成签到 ,获得积分10
1分钟前
1分钟前
chen完成签到 ,获得积分10
1分钟前
正直的松鼠完成签到 ,获得积分10
1分钟前
丽丽发布了新的文献求助10
1分钟前
研友_ZG4ml8完成签到 ,获得积分10
1分钟前
予秋发布了新的文献求助10
1分钟前
1分钟前
yzhilson完成签到 ,获得积分0
1分钟前
1分钟前
寄书长不达完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
xun发布了新的文献求助10
2分钟前
andre20完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482616
求助须知:如何正确求助?哪些是违规求助? 4583368
关于积分的说明 14389217
捐赠科研通 4512524
什么是DOI,文献DOI怎么找? 2473039
邀请新用户注册赠送积分活动 1459201
关于科研通互助平台的介绍 1432742