A Deep Convolution Multi-Adversarial adaptation network with Correlation Alignment for fault diagnosis of rotating machinery under different working conditions

计算机科学 Softmax函数 人工智能 模式识别(心理学) 分类器(UML) 深度学习 特征提取 卷积神经网络 卷积(计算机科学) 算法 人工神经网络
作者
Li Jiang,Lei Wei,Shuaiyu Wang,Shunsheng Guo,Yibing Li
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:126: 107179-107179 被引量:16
标识
DOI:10.1016/j.engappai.2023.107179
摘要

Domain adaptation (DA) approaches have been extensively applied to the diagnosis of rotating machinery faults under different working conditions. However, most DA-based methods perform poorly in practical situations since they generally only consider the global distribution or subdomain distribution of the source and target domains. Thus, we propose a novel Deep Convolution Multi-Adversarial adaptation network with Correlation Alignment (DCMACA). DCMACA consists of an improved deep convolutional feature extractor, a domain adaptation module, and a label classifier. The improved deep convolutional feature extractor comprises ordinary convolutional layers, depthwise convolution layers, Squeeze and Excitation modules, skip connection operations, an average pooling layer, and a fully connected layer. The domain adaptation module introduces multiple domain discriminators and Coral distance to align the subdomain distribution and global distribution of features extracted by the feature extractor, respectively. The softmax function is employed as the label classifier. Based on DCMACA, we presented a new approach for identifying faults in rotating machinery under different operating conditions. First, the original vibration signals are converted into the time-frequency maps of size 64 × 64 via the continuous wavelet transform and bilinear interpolation technologies. Subsequently, the time-frequency maps are input to DCMACA to complete the extraction of transferable features and fault identification. The proposed DCMACA fault identification approach was evaluated through two experiments, where it achieved an average accuracy of 98.84% in 18 migration diagnostic tasks. The comprehensive results reveal that the presented approach can realize higher diagnostic accuracies, robustness, and superior generalization capability compared to the existing mainstream DA approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
慕青应助不攻自破采纳,获得10
2秒前
潇洒的小鸽子完成签到 ,获得积分0
2秒前
媌哈哈关注了科研通微信公众号
3秒前
泯珉发布了新的文献求助10
6秒前
HLJemm应助科研通管家采纳,获得10
7秒前
小盛完成签到,获得积分10
7秒前
不想干活应助科研通管家采纳,获得10
8秒前
不想干活应助科研通管家采纳,获得10
8秒前
不想干活应助科研通管家采纳,获得10
8秒前
不想干活应助科研通管家采纳,获得50
8秒前
情怀应助科研通管家采纳,获得10
8秒前
Thea应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
领导范儿应助科研通管家采纳,获得10
9秒前
9秒前
kermitds完成签到 ,获得积分10
9秒前
ctc发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
ED应助乐平KYXK采纳,获得10
11秒前
11秒前
小佳完成签到 ,获得积分10
13秒前
13秒前
14秒前
15秒前
英姑应助gougoudy采纳,获得10
15秒前
ZMH完成签到,获得积分10
16秒前
16秒前
yjwang应助SIDEsss采纳,获得10
16秒前
16秒前
柴胡发布了新的文献求助10
17秒前
19秒前
媌哈哈发布了新的文献求助10
19秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4171461
求助须知:如何正确求助?哪些是违规求助? 3706922
关于积分的说明 11695769
捐赠科研通 3392549
什么是DOI,文献DOI怎么找? 1860814
邀请新用户注册赠送积分活动 920545
科研通“疑难数据库(出版商)”最低求助积分说明 832754