亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Learning-Based Data-Driven Approach for Predicting Mining Water Inrush From Coal Seam Floor Using Microseismic Monitoring Data

采矿工程 微震 煤矿开采 地质学 地震学 工程类 废物管理
作者
Huichao Yin,Gaizhuo Zhang,Qiang Wu,Shangxian Yin,Mohamad Reza Soltanian,Hung Vo Thanh,Zhenxue Dai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:28
标识
DOI:10.1109/tgrs.2023.3300012
摘要

Micro-seismic monitoring during mining operations generates spatiotemporal data that could indicate strata fractures and deformations leading to water inrush anomalies. However, current water inrush prediction methods face challenges from the data non-stationarity and multi-dimensionality, resulting in low prediction precision and effectiveness. This study proposes an innovative data-driven approach for predicting mining water inrush using field 3D micro-seismic monitoring data. The approach couples machine learning and deep learning models to analyze micro-seismic events, pre-processed using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and the Random Sample Consensus (RANSAC) algorithms for both data denoising and water inrush risk locating. Weighting periods are analyzed in periodic variations of event attributes using the fast Fourier transform (FFT), continuous wavelet transform (CWT), empirical mode decomposition (EMD), and seasonal and trend decomposition using Loess (STL) methods. Anomalies are detected using the long short-time memory (LSTM)+absolute error (AE), isolation forest (iForest) and LSTM+iForest models. The study is conducted using a micro-seismic dataset acquired during intermittent water inflow anomalies in the Xingdong coal mine in China. The approach accurately predicts a major water inrush incident hours prior to its occurrence merging detected anomalies with the obtained weighting periods, which are also used for model calibration. Future studies could focus on performance evaluation and calibration of the deep learning models using micro-seismic datasets from different mining operations, and expanding the approach's scope by incorporating other geophysical exploration technologies like the electrical methods to further study the presence and movement of water in mines for improving mining safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
刚刚
科研通AI5应助lll采纳,获得10
刚刚
33秒前
33秒前
budingman发布了新的文献求助10
38秒前
budingman发布了新的文献求助10
38秒前
2分钟前
budingman发布了新的文献求助10
2分钟前
DDL发布了新的文献求助10
2分钟前
科研通AI5应助budingman采纳,获得10
2分钟前
3分钟前
budingman发布了新的文献求助10
3分钟前
3分钟前
3分钟前
培培完成签到 ,获得积分10
4分钟前
重要千青完成签到,获得积分10
4分钟前
后陡门的夏天完成签到 ,获得积分10
5分钟前
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
豌豆发布了新的文献求助10
6分钟前
烟花应助豌豆采纳,获得10
6分钟前
lll完成签到,获得积分10
6分钟前
6分钟前
lll发布了新的文献求助10
6分钟前
6分钟前
黑粉头头完成签到,获得积分10
7分钟前
激动的似狮完成签到,获得积分10
7分钟前
乾坤侠客LW完成签到,获得积分10
7分钟前
7分钟前
Akim应助科研通管家采纳,获得10
8分钟前
LZhao01发布了新的文献求助10
8分钟前
元小夏完成签到,获得积分10
8分钟前
大个应助LZhao01采纳,获得10
8分钟前
bruna发布了新的文献求助100
8分钟前
lll发布了新的文献求助10
8分钟前
情怀应助苑阿宇采纳,获得10
9分钟前
9分钟前
bruna发布了新的文献求助10
9分钟前
9分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777609
求助须知:如何正确求助?哪些是违规求助? 3322969
关于积分的说明 10212793
捐赠科研通 3038316
什么是DOI,文献DOI怎么找? 1667304
邀请新用户注册赠送积分活动 798103
科研通“疑难数据库(出版商)”最低求助积分说明 758229