From prediction to design: Recent advances in machine learning for the study of 2D materials

领域(数学) 计算机科学 人工智能 比例(比率) 机器学习 纳米技术 材料科学 数据科学 生化工程 系统工程 工程类 物理 数学 量子力学 纯数学
作者
Hua He,Yuhua Wang,Yajuan Qi,Zichao Xu,Yue Li,Yumei Wang
出处
期刊:Nano Energy [Elsevier BV]
卷期号:118: 108965-108965 被引量:67
标识
DOI:10.1016/j.nanoen.2023.108965
摘要

Although data-driven approaches have made significant strides in various scientific fields, there has been a lack of systematic summaries and discussions on their application in 2D materials science. This review comprehensively surveys the multifaceted applications of machine learning (ML) in the study of 2D materials, filling this research gap. We summarize the latest developments in using ML for bandgap prediction, magnetic classification, catalyst material screening, and material synthesis design. Furthermore, we discuss the future directions of ML applications in various domains, providing robust references and guidance for future research in this field. Compared to traditional methods, we particularly emphasize the unique advantages of ML in predicting the bandgap of 2D materials, such as the introduction of advanced feature engineering and algorithms to enhance research efficiency. We also summarize ML algorithms for classifying the magnetism of 2D materials, showing that complex pattern recognition can precisely interpret the correlation between magnetic moments and atomic structures. Additionally, the review outlines how ML algorithms can efficiently sift through large-scale material databases to identify candidates with specific catalytic properties, thereby greatly accelerating the discovery process for new catalysts. ML has become a powerful tool in the field of materials science, promoting the discovery of new materials, improving their properties, and accelerating research across various application domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tongitian发布了新的文献求助10
2秒前
2秒前
young完成签到,获得积分10
2秒前
3秒前
3秒前
virtuallwh发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
513546523发布了新的文献求助10
5秒前
国际戏骨完成签到,获得积分10
5秒前
bcc666发布了新的文献求助10
5秒前
迷了路的猫完成签到,获得积分10
5秒前
7秒前
丁玉杰完成签到,获得积分10
7秒前
7秒前
7秒前
852应助努力发芽的小黄豆采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
国际戏骨发布了新的文献求助10
9秒前
陈哈哈完成签到,获得积分20
9秒前
10秒前
yq发布了新的文献求助10
10秒前
姬昌发布了新的文献求助10
11秒前
羽羽发布了新的文献求助10
11秒前
11秒前
馆长举报yhhazj1314求助涉嫌违规
11秒前
12秒前
杨拿铁发布了新的文献求助10
13秒前
迷路以筠发布了新的文献求助10
13秒前
岷瓮发布了新的文献求助10
14秒前
北北北发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4481820
求助须知:如何正确求助?哪些是违规求助? 3938121
关于积分的说明 12217060
捐赠科研通 3593206
什么是DOI,文献DOI怎么找? 1976071
邀请新用户注册赠送积分活动 1013207
科研通“疑难数据库(出版商)”最低求助积分说明 906426