亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Flutter Mechanism Analysis for Circular Solar Sail

太阳帆 颤振 机制(生物学) 航空航天工程 机械 物理 天体生物学 气象学 工程类 航空学 空气动力学 航天器 量子力学
作者
Yingjing Qian,Lian-En Zuo,Zixiao Liu,Xiao-Dong Yang,Lei Xu
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:61 (1): 497-504 被引量:1
标识
DOI:10.2514/1.j061994
摘要

No AccessTechnical NotesFlutter Mechanism Analysis for Circular Solar SailYing-Jing Qian, Lian-En Zuo, Zi-Xiao Liu, Xiao-Dong Yang and Lei XuYing-Jing QianBeijing Key Laboratory of Nonlinear Vibrations and Strength of Mechanical Structures, Beijing University of Technology, 100124 Beijing, People’s Republic of China*Professor, Faculty of Materials and Manufacturing.Search for more papers by this author, Lian-En ZuoBeijing Key Laboratory of Nonlinear Vibrations and Strength of Mechanical Structures, Beijing University of Technology, 100124 Beijing, People’s Republic of China†Graduate Student, Faculty of Materials and Manufacturing.Search for more papers by this author, Zi-Xiao Liu https://orcid.org/0000-0003-1161-1803University of California, Los Angeles, Los Angeles, California 90095‡Graduate Student, Department of Materials Science and Engineering.Search for more papers by this author, Xiao-Dong YangBeijing Key Laboratory of Nonlinear Vibrations and Strength of Mechanical Structures, 100124 Beijing, People’s Republic of China§Professor, Faculty of Materials and Manufacturing.Search for more papers by this author and Lei XuBeijing Spacecrafts, 100094 Beijing, People’s Republic of China¶Senior Engineer.Search for more papers by this authorPublished Online:27 Nov 2022https://doi.org/10.2514/1.J061994SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Liu Z. X., Qian Y. J., Yang X. D. and Zhang W., “Panel Flutter Mechanism of Rectangular Solar Sails Based on Travelling Mode Analysis,” Aerospace Science and Technology, Vol. 118, Nov. 2021, Paper 107015.https://doi.org/10.1016/j.ast.2021.107015 Google Scholar[2] Mcinnes C. R., Solar Sailing: Technology, Dynamics and Mission Applications, Springer Praxis Books, London, 1999, pp. 5–9. https://doi.org/10.1007/978-1-4471-3992-8 Google Scholar[3] Spencer D. A., Johnson L. and Long A. C., “Solar Sailing Technology Challenges,” Aerospace Science and Technology, Vol. 93, Oct. 2019, Paper 105276. https://doi.org/10.1016/j.ast.2019.07.009 Google Scholar[4] Firuzi S. and Gong S. P., “Attitude Control of a Flexible Solar Sail in Low Earth Orbit,” Journal of Guidance Control and Dynamics, Vol. 41, No. 8, Aug. 2018, pp. 1715–1730. https://doi.org/10.2514/1.G003178 LinkGoogle Scholar[5] Tsuda Y., Mori O., Funase R., Sawada H., Yamamoto T., Saiki T., Endo T. and Kawaguchi J., “Flight Status of IKAROS Deep Space Solar Sail Demonstrator,” Acta Astronautica, Vol. 69, Nos. 9–10, Nov. 2011, pp. 833–840. https://doi.org/10.1016/j.actaastro.2011.06.005 CrossrefGoogle Scholar[6] Qian Y. J., Liu Z. X. and Yang X. D., “Novel Subharmonic Resonance Periodic Orbits of a Solar Sail in Earth–Moon System,” Journal of Guidance Control and Dynamics, Vol. 42, No. 11, Nov. 2019, pp. 2532–2540. https://doi.org/10.2514/1.G004377 LinkGoogle Scholar[7] Biggs J. D. and McInnes C. R., “Solar Sail Formation Flying for Deep-Space Remote Sensing,” Journal of Spacecraft and Rockets, Vol. 46, No. 3, May 2009, pp. 670–678. https://doi.org/10.2514/1.42404 LinkGoogle Scholar[8] Wright J. L. and Kantrowitz A., “Space Sailing,” Physics Today, Vol. 45, No. 12, 1992, pp. 85–85. https://doi.org/10.1063/1.2809919 CrossrefGoogle Scholar[9] Osamu M., Hirotaka S. and Ryu F., “First Solar Power Sail Demonstration by IKAROS,” Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology JAPAN, Vol. 8, No. ists27, 2010, pp. 425–431. https://doi.org/10.2322/TASTJ.8.TO_4_25 Google Scholar[10] Johnson L., Whorton M., Heaton A., Pinson R., Laue G. and Adams C., “NanoSail-D: A Solar Sail Demonstration Mission,” Acta Astronautica, Vol. 68, Nos. 5–6, March 2011, pp. 571–575. https://doi.org/10.1016/j.actaastro.2010.02.008 CrossrefGoogle Scholar[11] Betts B., Spencer D. A., Nye B., Munakata R., Bellardo J. M., Wong S. D., Diaz A., Ridenoure R. W., Plante B. A., Foley J. D. and Vaughn J., “Lightsail 2: Controlled Solar Sailing Using a CubeSat,” Proceedings of 4th International Symposium on Solar Sailing Kyoto Research Park, Japan Space Forum Paper 17053, Jan. 2017, pp. 17–20. Google Scholar[12] Leslie M., Les J., Pater K., Julie C. R. and Andreas F., “Near-Earth Asteroid (NEA) Scout,” AIAA Space 2014 Conference and Exposition, AIAA Paper 2014-4435, Aug. 2014. https://doi.org/10.2514/6.2014-4435 Google Scholar[13] Yang X. D., Yang J. H., Qian Y. J., Zhang W. and Melnik R., “Dynamics of a Beam with Both Axial Moving and Spinning Motion: An Example of Bi-Gyroscopic Continua,” European Journal of Mechanics—A/Solids, Vol. 69, May 2018, pp. 231–237. https://doi.org/10.1016/j.euromechsol.2018.01.006 Google Scholar[14] Garrick I. and Reed W., “Historical Development of Aircraft Flutter,” Journal of Aircraft, Vol. 18, No. 11, 1981, pp. 897–912. https://doi.org/10.2514/3.57579 LinkGoogle Scholar[15] Chai Y. Y., Song Z. G. and Ling F. M., “Investigations on the Influences of Elastic Foundations on the Aerothermoelastic Flutter and Thermal Buckling Properties of Lattice Sandwich Panels in Supersonic Airflow,” Acta Astronautica, Vol. 140, Nov. 2017, pp. 176–189. https://doi.org/10.1016/j.actaastro.2017.08.016 CrossrefGoogle Scholar[16] Zhou X. P., Wang Y. W. and Zhang W., “Vibration and Flutter Characteristics of GPL-Reinforced Functionally Graded Porous Cylindrical Panels Subjected to supersonic Flow,” Acta Astronautica, Vol. 183, June 2021, pp. 89–100. https://doi.org/10.1016/j.actaastro.2021.03.003 CrossrefGoogle Scholar[17] Zhang W. W. and Ye Z. Y., “Effect of Control Surface on Airfoil Flutter in Transonic Flow,” Acta Astronautica, Vol. 66, Nos. 7–8, 2010, pp. 999–1007. https://doi.org/10.1016/j.actaastro.2009.09.016 CrossrefGoogle Scholar[18] Huang T. C. and Das A., “Thermoelastic Flutter Models for Elements of Flexible Satellites,” Acta Astronautica, Vol. 2, Nos. 9–10, 1975, pp. 819–837. https://doi.org/10.1016/0094-5765(75)90023-5 CrossrefGoogle Scholar[19] Dowell E. H., “Can Solar Sails Flutter,” AIAA Journal, Vol. 49, No. 6, June 2011, pp. 1305–1307. https://doi.org/10.2514/1.J050900 LinkGoogle Scholar[20] Gibbs S. C., Guerrant D. V., Wilkie W. K. and Dowell E. H., “Rectangular Solar Sail Flutter,” 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper 2013-1945, 2013. https://doi.org/10.2514/6.2013-1945 Google Scholar[21] Juang J. N., Warren J. E., Horta L. G. and Wilkie W. K., “Progress in NASA Heliogyro Solar Sail Structural Dynamics and Solar Elastic Stability Research,” 4th International Symposium on Solar Sailing, Paper 17080, Jan. 2017. Google Scholar[22] Pimienta P., Tsai L. W., Juang J. N. and Crassidis J. L., “Heliogyro Solar Sail Structural Dynamics and Stability,” Journal of Guidance, Control, and Dynamics, Vol. 42, No. 8, 2019, pp. 1645–1657. https://doi.org/10.2514/1.G003758 Google Scholar[23] Yang X. D., Yu T. J., Wei Z., Qian Y. J. and Yao M. H., “Damping Effect on Supersonic Panel Flutter of Composite Plate with Viscoelastic Mid-Layer,” Composite Structures, Vol. 137, March 2016, pp. 105–113. https://doi.org/10.1016/j.compstruct.2015.11.020 CrossrefGoogle Scholar[24] Dwayne L. E. and Steve W., “ST8 Validation Experiment: Yltraflex-175 Solar Array Technology Advance: Deployment Kinematics and Deployed Dynamics Ground Testing and Model Validation,” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA Paper 2010-1497, 2010. https://doi.org/10.2514/6.2010-1497 Google Scholar[25] Sakamoto H., Park K. C. and Miyazaki Y., “Effect of Static and Dynamic Solar Sail Deformation on Center of Pressure and Thrust Forces,” AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA Paper 2006-6184, 2013. https://doi.org/10.2514/6.2006-6184 Google Scholar[26] Kabe A. M. and Sako B. H., “Vibration of Continuous Systems,” Structural Dynamics Fundamentals and Advanced Applications, Vol. 2, Academic Press, California, 2020, pp. 749–945. https://doi.org/10.1016/B978-0-12-821615-6.00009-5 Google Scholar[27] Murphy D. M., Murphey T. W. and Gierow P. A., “Scalable Solar-Sail Subsystem Design Concept,” Journal of Spacecraft and Rockets, Vol. 40, No. 4, July 2003, pp. 539–547. https://doi.org/10.2514/2.3975 LinkGoogle Scholar[28] Wie B., “Solar Sail Attitude Control and Dynamics, Part 1,” Journal of Guidance, Control, and Dynamics, Vol. 27, No. 4, July 2004, pp. 526–535. https://doi.org/10.2514/1.11134 LinkGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byStudy Membrane Solarelasticity Using a Wave Model and a Corpuscular Model of LightJinduo Chen, Aiming Shi , Yiwen He, Earl H. Dowell, Kuanfang Ren, Yang Pei and Haitao Zhang1 June 2023 | AIAA Journal, Vol. 61, No. 9 What's Popular Volume 61, Number 1January 2023 CrossmarkInformationCopyright © 2022 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsDynamic AnalysisMaterials and Structural MechanicsPropulsion and PowerSpacecraft PropulsionStructural Dynamics and Characterization KeywordsSolar SailFlutter AnalysisModal AnalysisAcknowledgmentsThis work was supported in part by the National Natural Science Foundation of China (project numbers 12172013 and 11772009) and the State Key Laboratory of Mechanical System and Vibration (grant number MSV202107). The data that support the plots within this paper and other finding of this study are available from the corresponding author on request.PDF Received27 April 2022Accepted31 October 2022Published online27 November 2022
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
慕青应助TXZ06采纳,获得10
18秒前
暖雪儿发布了新的文献求助10
20秒前
31秒前
暖雪儿完成签到,获得积分10
34秒前
35秒前
TXZ06发布了新的文献求助10
38秒前
彭佳丽发布了新的文献求助10
44秒前
2分钟前
邹醉蓝完成签到,获得积分10
3分钟前
3分钟前
MQRR发布了新的文献求助10
3分钟前
4分钟前
4分钟前
坚强的广山应助MQRR采纳,获得10
4分钟前
FashionBoy应助chloe采纳,获得10
4分钟前
SOLOMON应助MQRR采纳,获得10
4分钟前
Gilhog完成签到,获得积分10
4分钟前
Neptune完成签到,获得积分10
4分钟前
CodeCraft应助Gilhog采纳,获得10
5分钟前
热爱科研的人完成签到 ,获得积分10
5分钟前
共享精神应助chloe采纳,获得10
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
chloe发布了新的文献求助10
6分钟前
不安的丹亦完成签到,获得积分10
6分钟前
6分钟前
lensray发布了新的文献求助10
6分钟前
秋雪瑶应助lensray采纳,获得10
6分钟前
chloe完成签到,获得积分10
7分钟前
chloe发布了新的文献求助10
7分钟前
Chief完成签到,获得积分10
8分钟前
8分钟前
郜尔阳完成签到,获得积分10
9分钟前
10分钟前
郜尔阳发布了新的文献求助50
10分钟前
bkagyin应助刺猬hedgehog采纳,获得10
10分钟前
ZTY776完成签到,获得积分10
11分钟前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
巫和雄 -《毛泽东选集》英译研究 (2013) 800
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
The three stars each: the Astrolabes and related texts 500
Revolutions 400
Diffusion in Solids: Key Topics in Materials Science and Engineering 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2450813
求助须知:如何正确求助?哪些是违规求助? 2124437
关于积分的说明 5405774
捐赠科研通 1853223
什么是DOI,文献DOI怎么找? 921688
版权声明 562263
科研通“疑难数据库(出版商)”最低求助积分说明 493029