亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EMLI-ICC: an ensemble machine learning-based integration algorithm for metastasis prediction and risk stratification in intrahepatic cholangiocarcinoma

转移 分类器(UML) 计算机科学 人工智能 集成学习 机器学习 转录组 生物标志物发现 交叉验证 生物标志物 计算生物学 基因 生物信息学 癌症 基因表达 生物 蛋白质组学 医学 内科学 生物化学
作者
Jian Ruan,Shuaishuai Xu,Ruyin Chen,Wenxin Qu,Qiong Li,Chanqi Ye,Wei Wu,Qi Jiang,Feifei Yan,Enhui Shen,Qinjie Chu,Yunlu Jia,Xiaochen Zhang,Wenguang Fu,Jinzhang Chen,Michael P. Timko,Peng Zhao,Longjiang Fan,Yifei Shen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (6) 被引量:7
标识
DOI:10.1093/bib/bbac450
摘要

Robust strategies to identify patients at high risk for tumor metastasis, such as those frequently observed in intrahepatic cholangiocarcinoma (ICC), remain limited. While gene/protein expression profiling holds great potential as an approach to cancer diagnosis and prognosis, previously developed protocols using multiple diagnostic signatures for expression-based metastasis prediction have not been widely applied successfully because batch effects and different data types greatly decreased the predictive performance of gene/protein expression profile-based signatures in interlaboratory and data type dependent validation. To address this problem and assist in more precise diagnosis, we performed a genome-wide integrative proteome and transcriptome analysis and developed an ensemble machine learning-based integration algorithm for metastasis prediction (EMLI-Metastasis) and risk stratification (EMLI-Prognosis) in ICC. Based on massive proteome (216) and transcriptome (244) data sets, 132 feature (biomarker) genes were selected and used to train the EMLI-Metastasis algorithm. To accurately detect the metastasis of ICC patients, we developed a weighted ensemble machine learning method based on k-Top Scoring Pairs (k-TSP) method. This approach generates a metastasis classifier for each bootstrap aggregating training data set. Ten binary expression rank-based classifiers were generated for detection of metastasis separately. To further improve the accuracy of the method, the 10 binary metastasis classifiers were combined by weighted voting based on the score from the prediction results of each classifier. The prediction accuracy of the EMLI-Metastasis algorithm achieved 97.1% and 85.0% in proteome and transcriptome datasets, respectively. Among the 132 feature genes, 21 gene-pair signatures were developed to establish a metastasis-related prognosis risk-stratification model in ICC (EMLI-Prognosis). Based on EMLI-Prognosis algorithm, patients in the high-risk group had significantly dismal overall survival relative to the low-risk group in the clinical cohort (P-value < 0.05). Taken together, the EMLI-ICC algorithm provides a powerful and robust means for accurate metastasis prediction and risk stratification across proteome and transcriptome data types that is superior to currently used clinicopathological features in patients with ICC. Our developed algorithm could have profound implications not just in improved clinical care in cancer metastasis risk prediction, but also more broadly in machine-learning-based multi-cohort diagnosis method development. To make the EMLI-ICC algorithm easily accessible for clinical application, we established a web-based server for metastasis risk prediction (http://ibi.zju.edu.cn/EMLI/).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赧赧完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研狗完成签到 ,获得积分10
2分钟前
冬去春来完成签到 ,获得积分10
2分钟前
科研通AI5应助当里个当采纳,获得10
2分钟前
2分钟前
当里个当发布了新的文献求助10
3分钟前
当里个当完成签到,获得积分10
3分钟前
wanci应助科研通管家采纳,获得10
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
完美世界应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得30
3分钟前
cdercder应助2580你猜采纳,获得10
3分钟前
万邦德完成签到,获得积分10
4分钟前
2580你猜完成签到,获得积分10
4分钟前
5分钟前
6分钟前
yang发布了新的文献求助10
6分钟前
6分钟前
6分钟前
AM发布了新的文献求助10
7分钟前
科研通AI2S应助Jinny采纳,获得10
8分钟前
沙脑完成签到 ,获得积分10
8分钟前
铜锣湾新之助完成签到 ,获得积分10
9分钟前
彭于晏应助天空之城采纳,获得10
9分钟前
9分钟前
天空之城发布了新的文献求助10
9分钟前
传奇3应助M先生采纳,获得10
10分钟前
10分钟前
M先生发布了新的文献求助10
10分钟前
10分钟前
发发发发布了新的文献求助10
10分钟前
M先生完成签到,获得积分20
10分钟前
iacir33完成签到,获得积分20
12分钟前
小胜完成签到 ,获得积分10
12分钟前
小羊完成签到 ,获得积分10
12分钟前
13分钟前
Georgechan完成签到,获得积分10
13分钟前
科研通AI2S应助天空之城采纳,获得10
14分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777609
求助须知:如何正确求助?哪些是违规求助? 3322988
关于积分的说明 10212867
捐赠科研通 3038350
什么是DOI,文献DOI怎么找? 1667325
邀请新用户注册赠送积分活动 798103
科研通“疑难数据库(出版商)”最低求助积分说明 758229