A model based on machine learning for the prediction of cyclosporin A trough concentration in Chinese allo-HSCT patients

医学 机器学习 槽水位 低谷(经济学) 治疗药物监测 治疗窗口 钙调神经磷酸酶 人口 药品 内科学 人工智能 药理学 移植 他克莫司 计算机科学 环境卫生 宏观经济学 经济
作者
Lin Song,Chenrong Huang,Shi-Zheng Pan,Jianguo Zhu,Zong-Qi Cheng,Xun Yu,Ling Xue,Fan Xia,Jinyuan Zhang,Depei Wu,Liyan Miao
出处
期刊:Expert Review of Clinical Pharmacology [Taylor & Francis]
卷期号:16 (1): 83-91 被引量:7
标识
DOI:10.1080/17512433.2023.2142561
摘要

Cyclosporin A is a calcineurin inhibitor which has a narrow therapeutic window and high interindividual variability. Various population pharmacokinetic models have been reported; however, professional software and technical personnel were needed and the variables of the models were limited. Therefore, the aim of this study was to establish a model based on machine learning to predict CsA trough concentrations in Chinese allo-HSCT patients.A total of 7874 cases of CsA therapeutic drug monitoring data from 2069 allo-HSCT patients were retrospectively included. Sequential forward selection was used to select variable subsets, and eight different algorithms were applied to establish the prediction model.XGBoost exhibited the highest prediction ability. Except for the variables that were identified by previous studies, some rarely reported variables were found, such as norethindrone, WBC, PAB, and hCRP. The prediction accuracy within ±30% of the actual trough concentration was above 0.80, and the predictive ability of the models was demonstrated to be effective in external validation.In this study, models based on machine learning technology were established to predict CsA levels 3-4 days in advance during the early inpatient phase after HSCT. A new perspective for CsA clinical application is provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
小董继续努力完成签到,获得积分10
4秒前
ding应助科研通管家采纳,获得10
4秒前
shiqiang mu应助科研通管家采纳,获得10
4秒前
shea应助科研通管家采纳,获得10
4秒前
1101592875应助科研通管家采纳,获得10
4秒前
scm应助科研通管家采纳,获得30
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
5秒前
科研助手6应助科研通管家采纳,获得10
5秒前
科研助手6应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
shea应助科研通管家采纳,获得10
5秒前
涂楚捷发布了新的文献求助10
5秒前
科研助手6应助科研通管家采纳,获得10
5秒前
1101592875应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得30
6秒前
ED应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
shiqiang mu应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得30
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
lwk205应助科研通管家采纳,获得20
7秒前
7秒前
吗喽完成签到,获得积分10
7秒前
漾漾发布了新的文献求助20
8秒前
谭慧完成签到,获得积分10
10秒前
香蕉八宝粥完成签到,获得积分10
10秒前
66wudi发布了新的文献求助10
11秒前
bblv发布了新的文献求助10
13秒前
昱昱完成签到 ,获得积分10
14秒前
planto完成签到,获得积分10
14秒前
温柔的迎荷完成签到,获得积分10
14秒前
zhw完成签到,获得积分10
15秒前
科研通AI5应助XINDDD采纳,获得10
16秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864287
求助须知:如何正确求助?哪些是违规求助? 3406572
关于积分的说明 10650464
捐赠科研通 3130561
什么是DOI,文献DOI怎么找? 1726469
邀请新用户注册赠送积分活动 831749
科研通“疑难数据库(出版商)”最低求助积分说明 780004