已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting the Objective and Subjective Clinical Outcomes of Anterior Cruciate Ligament Reconstruction: A Machine Learning Analysis of 432 Patients

医学 前交叉韧带重建术 前交叉韧带 最小临床重要差异 逻辑回归 机器学习 接收机工作特性 人工智能 物理疗法 外科 随机对照试验 内科学 计算机科学
作者
Zipeng Ye,Tianlun Zhang,Chenliang Wu,Yi Qiao,Wei Su,Jiebo Chen,Guoming Xie,Shikui Dong,Junjie Xu,Jinzhong Zhao
出处
期刊:American Journal of Sports Medicine [SAGE]
卷期号:50 (14): 3786-3795 被引量:46
标识
DOI:10.1177/03635465221129870
摘要

Background: Sports levels, baseline patient-reported outcome measures (PROMs), and surgical procedures are correlated with the outcomes of anterior cruciate ligament reconstruction (ACLR). Machine learning may be superior to conventional statistical methods in making repeatable and accurate predictions. Purpose: To identify the best-performing machine learning models for predicting the objective and subjective clinical outcomes of ACLR and to determine the most important predictors. Study Design: Case-control study; Level of evidence, 3. Methods: A total of 432 patients who underwent anatomic double-bundle ACLR with hamstring tendon autograft between January 2010 and February 2019 were included in the machine learning analysis. A total of 15 predictive variables and 6 outcome variables were selected to validate the logistic regression, Gaussian naïve Bayes machine, random forest, Extreme Gradient Boosting (XGBoost), isotonically calibrated XGBoost, and sigmoid calibrated XGBoost models. For each clinical outcome, the best-performing model was determined using the area under the receiver operating characteristic curve (AUC), whereas the importance and direction of each predictive variable were demonstrated in a Shapley Additive Explanations summary plot. Results: The AUC and accuracy of the best-performing model, respectively, were 0.944 (excellent) and 98.6% for graft failure; 0.920 (excellent) and 91.4% for residual laxity; 0.930 (excellent) and 91.0% for failure to achieve the minimal clinically important difference (MCID) of the Lysholm score; 0.942 (excellent) and 95.1% for failure to achieve the MCID of the International Knee Documentation Committee (IKDC) score; 0.773 (fair) and 70.5% for return to preinjury sports; and 0.777 (fair) and 69.2% for return to pivoting sports. Medial meniscal resection, participation in competitive sports, and steep posterior tibial slope were top predictors of graft failure, whereas high-grade preoperative knee laxity, long follow-up period, and participation in competitive sports were top predictors of residual laxity. High preoperative Lysholm and IKDC scores were highly predictive of not achieving the MCIDs of PROMs. Young age, male sex, high preoperative IKDC score, and large graft diameter were important predictors of return to preinjury or pivoting sports. Conclusion: Machine learning analysis can provide reliable predictions for the objective and subjective clinical outcomes (graft failure, residual laxity, PROMs, and return to sports) of ACLR. Patient-specific evaluation and decision making are recommended before and after surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kentonchow应助最好的麦穗采纳,获得30
1秒前
无语的冰淇淋完成签到 ,获得积分10
2秒前
上官若男应助北北北采纳,获得10
2秒前
368DFS发布了新的文献求助10
3秒前
脑洞疼应助开心叫兽采纳,获得10
3秒前
liu完成签到 ,获得积分10
4秒前
hhhjkkk完成签到,获得积分10
4秒前
苹果饼干完成签到,获得积分10
5秒前
科目三应助实验顺顺利利采纳,获得10
6秒前
小小小西完成签到,获得积分10
6秒前
科研通AI6应助368DFS采纳,获得10
7秒前
科研通AI6应助368DFS采纳,获得10
7秒前
愉快自中完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
英姑应助口口方采纳,获得10
9秒前
星辰大海应助ww采纳,获得10
9秒前
9秒前
10秒前
zhaoyuwei发布了新的文献求助10
11秒前
11秒前
吃不饱发布了新的文献求助10
12秒前
Xuhang发布了新的文献求助10
13秒前
王文强发布了新的文献求助10
14秒前
快乐学习每一天完成签到 ,获得积分10
15秒前
zxy发布了新的文献求助10
16秒前
16秒前
吃不饱完成签到,获得积分10
17秒前
17秒前
chowjb给chowjb的求助进行了留言
18秒前
T1aNer299发布了新的文献求助10
19秒前
马畅完成签到 ,获得积分10
19秒前
老的火龙果完成签到,获得积分10
20秒前
Wang发布了新的文献求助10
21秒前
21秒前
卢不评完成签到,获得积分10
23秒前
24秒前
29秒前
Dr.胡完成签到,获得积分10
29秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454635
求助须知:如何正确求助?哪些是违规求助? 4561964
关于积分的说明 14284045
捐赠科研通 4485792
什么是DOI,文献DOI怎么找? 2457038
邀请新用户注册赠送积分活动 1447677
关于科研通互助平台的介绍 1422913