MpMsCFMA-Net: Multi-path Multi-scale Context Feature Mixup and Aggregation Network for medical image segmentation

计算机科学 编码器 背景(考古学) 人工智能 编码(内存) 卷积神经网络 分割 路径(计算) 特征(语言学) 图像分割 编码 编码(集合论) 特征提取 模式识别(心理学) 数据挖掘 计算机网络 语言学 操作系统 程序设计语言 基因 生物 集合(抽象数据类型) 哲学 古生物学 生物化学 化学
作者
Miao Che,Zongfei Wu,Jiahao Zhang,Xilin Liu,Shuai Zhang,Yifei Liu,Shu Feng,Yongfei Wu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108292-108292 被引量:6
标识
DOI:10.1016/j.engappai.2024.108292
摘要

Automatic and accurate medical image segmentation is a crucial step for clinical diagnosis and treatment planning of diseases. The advanced convolutional neural network (CNN) approaches based on the encoder–decoder structure have achieved state-of-the-art performances in many different medical image segmentation tasks. However, existing networks have insufficient capability of extracting the context information in each encoding stage, so they cannot effectively perceive multi-scale objects in images. In addition, the continuous down-sampling and convolution operations in the encoding stage lead to much loss of the detailed information, resulting in poor segmentation performance. In this paper, we propose a Multi-path Multi-scale Context Feature MixUp and Aggregation Network (named MpMsCFMA-Net) which fuses and aggregates multi-path features with multi-scale context information to address these issues. Based on the encoder–decoder structure, we first design the encoder to encode the semantic and detailed information of input images and introduce multi-scale context extraction module in each encoding stage. Furthermore, we design multiple features mixup module between the encoder and the decoder, aiming at providing different levels of global context information for the decoder by reconstructing skip-connection. Finally, we introduce the decoder with deeper features aggregation to better fuse multi-scale context information across layers. Experimental results on four public medical image datasets confirm that our proposed network achieves promising results and outperforms other state-of-the-art methods in most of evaluation metrics. The source code will be publicly available at https://github.com/tricksterANDthug/MpMsCFMA-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
爆米花应助个性乐儿采纳,获得10
2秒前
3秒前
一叶发布了新的文献求助10
4秒前
aaaaa完成签到 ,获得积分10
6秒前
9秒前
华仔应助yyymmma采纳,获得10
9秒前
10秒前
12秒前
搜集达人应助HUO采纳,获得20
14秒前
缓慢平蓝发布了新的文献求助10
15秒前
环境催化发布了新的文献求助10
15秒前
15秒前
野草发布了新的文献求助10
15秒前
科研通AI5应助qianZhang采纳,获得10
16秒前
16秒前
乐乐应助雪糕刺客采纳,获得10
16秒前
大力翠丝完成签到,获得积分10
16秒前
monere发布了新的文献求助10
17秒前
18秒前
有魅力丝完成签到,获得积分20
18秒前
华仔应助燕小丙采纳,获得10
18秒前
大个应助开心山芙采纳,获得30
19秒前
20秒前
yyymmma发布了新的文献求助10
20秒前
21秒前
EOFG0PW完成签到,获得积分10
21秒前
有魅力丝发布了新的文献求助10
22秒前
22秒前
ha发布了新的文献求助10
23秒前
星落枝头发布了新的文献求助10
23秒前
25秒前
lizhiqian2024发布了新的文献求助10
26秒前
26秒前
asdfg123发布了新的文献求助10
28秒前
ZhouYW应助稳稳的幸福采纳,获得10
29秒前
Lucas应助xin采纳,获得10
29秒前
ZQP发布了新的文献求助10
30秒前
无花果应助kkkk采纳,获得10
30秒前
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791034
求助须知:如何正确求助?哪些是违规求助? 3335765
关于积分的说明 10276743
捐赠科研通 3052313
什么是DOI,文献DOI怎么找? 1675100
邀请新用户注册赠送积分活动 803082
科研通“疑难数据库(出版商)”最低求助积分说明 761066