Leveraging Expert Consistency to Improve Algorithmic Decision Support

计算机科学 一致性(知识库) 机器学习 背景(考古学) 桥(图论) 人工智能 专家启发 决策支持系统 一致性模型 数据挖掘 数据一致性 医学 古生物学 统计 数学 内科学 生物 操作系统
作者
Maria De‐Arteaga,Vincent Jeanselme,Artur Dubrawski,Alexandra Chouldechova
出处
期刊:Cornell University - arXiv 被引量:20
标识
DOI:10.48550/arxiv.2101.09648
摘要

Machine learning (ML) is increasingly being used to support high-stakes decisions, a trend owed in part to its promise of superior predictive power relative to human assessment. However, there is frequently a gap between decision objectives and what is captured in the observed outcomes used as labels to train ML models. As a result, machine learning models may fail to capture important dimensions of decision criteria, hampering their utility for decision support. In this work, we explore the use of historical expert decisions as a rich -- yet imperfect -- source of information that is commonly available in organizational information systems, and show that it can be leveraged to bridge the gap between decision objectives and algorithm objectives. We consider the problem of estimating expert consistency indirectly when each case in the data is assessed by a single expert, and propose influence function-based methodology as a solution to this problem. We then incorporate the estimated expert consistency into a predictive model through a training-time label amalgamation approach. This approach allows ML models to learn from experts when there is inferred expert consistency, and from observed labels otherwise. We also propose alternative ways of leveraging inferred consistency via hybrid and deferral models. In our empirical evaluation, focused on the context of child maltreatment hotline screenings, we show that (1) there are high-risk cases whose risk is considered by the experts but not wholly captured in the target labels used to train a deployed model, and (2) the proposed approach significantly improves precision for these cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉惜儿发布了新的文献求助10
刚刚
刚刚
领导范儿应助FCL采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
加菲丰丰应助科研通管家采纳,获得10
2秒前
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
加菲丰丰应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
轻松的芯完成签到 ,获得积分10
3秒前
3秒前
打工科研发布了新的文献求助10
4秒前
炙热的黄蜂完成签到 ,获得积分10
4秒前
WAM发布了新的文献求助10
5秒前
孤僻完成签到,获得积分10
5秒前
科研通AI5应助文艺的口红采纳,获得10
6秒前
科研通AI5应助文艺的口红采纳,获得10
6秒前
科研通AI5应助从容的鲜花采纳,获得10
6秒前
早睡带盐人完成签到,获得积分10
7秒前
卞钰应助leinuo077采纳,获得10
7秒前
科研通AI5应助AD钙钙钙采纳,获得30
7秒前
9秒前
9秒前
10秒前
白菜发布了新的文献求助10
13秒前
14秒前
芋头完成签到,获得积分10
14秒前
哈哈哈哈哈哈哈完成签到,获得积分20
15秒前
15秒前
舒心的老四完成签到,获得积分10
15秒前
reticenturbo完成签到,获得积分10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793534
求助须知:如何正确求助?哪些是违规求助? 3338480
关于积分的说明 10289803
捐赠科研通 3054952
什么是DOI,文献DOI怎么找? 1676215
邀请新用户注册赠送积分活动 804255
科研通“疑难数据库(出版商)”最低求助积分说明 761812