拓扑(电路)
Wannier函数
对偶(序理论)
物理
接口(物质)
空格(标点符号)
对称(几何)
超材料
理论物理学
计算机科学
量子力学
数学
纯数学
几何学
吉布斯等温线
组合数学
表面张力
操作系统
作者
Peng Zhang,Han Jia,Jiuyang Lu,Xinghang Yang,Suhao Wang,Xiangyuan Xu,Yuzhen Yang,Zhengyou Liu,Jun Yang
标识
DOI:10.1103/physrevapplied.18.064094
摘要
Recently, real-space representations, revealing in depth the duality of topological descriptions in real and momentum space, have been applied to show multidimensional crystalline topology. Here we propose nontrivial phononic crystals by constructing different Wannier configurations based on real-space representations. We experimentally achieve the symmetry-protected interface topology in multiple dimensions containing anomalous interface states and higher-order corner states. Nontrivial acoustic pseudospin polarizations are critical to the interface states and have been directly observed in experiment. In a consistent frame, the higher-order corner states arising from the fractional charge anomaly are further observed. Our study provides a scheme based on Wannier configurations for designing topological metamaterials, which is fruitful for characterizing and manipulating multidimensional topological states and can be generalized to other classical systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI