Machine Learning-Assisted Synthesis of Two-Dimensional Materials

材料科学 支持向量机 机器学习 化学气相沉积 多层感知器 朴素贝叶斯分类器 计算机科学 人工智能 纳米技术 人工神经网络
作者
Mingying Lu,Haining Ji,Yong Zhao,Yongxing Chen,Jundong Tao,Yangyong Ou,Yi Wang,Yan Huang,Junlong Wang,Guolin Hao
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (1): 1871-1878 被引量:30
标识
DOI:10.1021/acsami.2c18167
摘要

Two-dimensional (2D) materials have intriguing physical and chemical properties, which exhibit promising applications in the fields of electronics, optoelectronics, as well as energy storage. However, the controllable synthesis of 2D materials is highly desirable but remains challenging. Machine learning (ML) facilitates the development of insights and discoveries from a large amount of data in a short time for the materials synthesis, which can significantly reduce the computational costs and shorten the development cycles. Based on this, taking the 2D material MoS2 as an example, the parameters of successfully synthesized materials by chemical vapor deposition (CVD) were explored through four ML algorithms: XGBoost, Support Vector Machine (SVM), Naïve Bayes (NB), and Multilayer Perceptron (MLP). Recall, specificity, accuracy, and other metrics were used to assess the performance of these four models. By comparison, XGBoost was the best performing model among all the models, with an average prediction accuracy of over 88% and a high area under the receiver operating characteristic (AUROC) reaching 0.91. And these findings showed that the reaction temperature (T) had a crucial influence on the growth of MoS2. Furthermore, the importance of the features in the growth mechanism of MoS2 was optimized, such as the reaction temperature (T), Ar gas flow rate (Rf), reaction time (t), and so on. The results demonstrated that ML assisted materials preparation can significantly minimize the time spent on exploration and trial-and-error, which provided perspectives in the preparation of 2D materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
谭金钰发布了新的文献求助10
1秒前
qc应助高贵宛海采纳,获得10
2秒前
YU完成签到,获得积分10
3秒前
土豪的莺发布了新的文献求助30
5秒前
6秒前
6秒前
星辰大海应助jiezi1985采纳,获得30
6秒前
6秒前
7秒前
7秒前
wanci应助20240901采纳,获得10
8秒前
小杭76应助shouyu29采纳,获得10
9秒前
zz偏不跑完成签到,获得积分10
9秒前
木制小土猪应助jsss采纳,获得10
9秒前
11秒前
wxyhaha发布了新的文献求助10
11秒前
xxl发布了新的文献求助10
11秒前
ghostpants完成签到,获得积分10
11秒前
请不要挂机完成签到,获得积分10
11秒前
12秒前
隐形夜梦完成签到,获得积分10
12秒前
失眠万仇完成签到,获得积分20
13秒前
13秒前
Doctor_wan89完成签到,获得积分10
14秒前
14秒前
情怀应助科研通管家采纳,获得30
14秒前
bkagyin应助科研通管家采纳,获得10
15秒前
15秒前
十八鱼应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
完美世界应助ace采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
赵yy应助科研通管家采纳,获得10
15秒前
情怀应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
lab完成签到 ,获得积分10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338850
求助须知:如何正确求助?哪些是违规求助? 4475838
关于积分的说明 13929631
捐赠科研通 4371139
什么是DOI,文献DOI怎么找? 2401701
邀请新用户注册赠送积分活动 1394716
关于科研通互助平台的介绍 1366547