电解质
溶剂化
材料科学
锂(药物)
化学工程
电池(电)
溶剂
化学物理
电极
物理化学
化学
热力学
有机化学
物理
工程类
内分泌学
功率(物理)
医学
作者
Hao Wang,Dong Yan,Hongyu Liu,Shuai Li,Xiaobin Niu,Chuying Ouyang,Hong Li,Liping Wang
标识
DOI:10.1002/adma.202509760
摘要
Abstract High‐voltage lithium (Li) metal batteries (LMBs) emerge as a pivotal strategy for achieving high energy density applications. However, the electrolyte instability leading to inferior rate performance and short lifespan remains to be addressed. In this study, a new non‐concentrated gradient‐solvation electrolyte by solvent polarity discrepancy is developed. A highly donor‐capable ether forms the Li⁺‐solvated core through strong ion‐dipole interactions, while a weakly donating carbonate creates the shell structure. Such a gradient‐solvation structure enables the electrolyte with a high oxidation voltage (4.6 V vs. Li/Li + ) and rapid Li + ‐desolvated kinetic. Consequently, the electrolyte facilitates the LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811)||Li cells to attain a specific capacity of 165.8 mAh g −1 at 5C, alongside 1000 stable cycles at 1C charge/3C discharge with 66% capacity retention. Even under lean conditions (N/P = 1.5, electrolyte: 20 µL), NCM811||Li cell still maintains 97.5% capacity retention over 100 cycles. Furthermore, a 3.2 Ah pouch cell achieves a specific energy density of 447.6 Wh kg − ¹ with stable cycling. These findings highlight the promise of gradient‐solvation electrolytes for high‐voltage LMBs applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI