Multi-source deep domain adaptation ensemble framework for cross-dataset motor imagery EEG transfer learning

学习迁移 域适应 计算机科学 脑电图 运动表象 人工智能 适应(眼睛) 深度学习 领域(数学分析) 模式识别(心理学) 脑-机接口 心理学 神经科学 数学 分类器(UML) 数学分析
作者
Minmin Miao,Zhongliang Yang,Zhenzhen Sheng,Baoguo Xu,Wen-Bin Zhang,Xinmin Cheng
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:45 (5): 055024-055024
标识
DOI:10.1088/1361-6579/ad4e95
摘要

Abstract Objective . Electroencephalography (EEG) is an important kind of bioelectric signal for measuring physiological activities of the brain, and motor imagery (MI) EEG has significant clinical application prospects. Convolutional neural network has become a mainstream algorithm for MI EEG classification, however lack of subject-specific data considerably restricts its decoding accuracy and generalization performance. To address this challenge, a novel transfer learning (TL) framework using auxiliary dataset to improve the MI EEG classification performance of target subject is proposed in this paper. Approach . We developed a multi-source deep domain adaptation ensemble framework (MSDDAEF) for cross-dataset MI EEG decoding. The proposed MSDDAEF comprises three main components: model pre-training, deep domain adaptation, and multi-source ensemble. Moreover, for each component, different designs were examined to verify the robustness of MSDDAEF. Main results . Bidirectional validation experiments were performed on two large public MI EEG datasets (openBMI and GIST). The highest average classification accuracy of MSDDAEF reaches 74.28% when openBMI serves as target dataset and GIST serves as source dataset. While the highest average classification accuracy of MSDDAEF is 69.85% when GIST serves as target dataset and openBMI serves as source dataset. In addition, the classification performance of MSDDAEF surpasses several well-established studies and state-of-the-art algorithms. Significance . The results of this study show that cross-dataset TL is feasible for left/right-hand MI EEG decoding, and further indicate that MSDDAEF is a promising solution for addressing MI EEG cross-dataset variability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
老乡开下门吧完成签到,获得积分10
5秒前
5秒前
二当家完成签到,获得积分10
6秒前
聪明的我完成签到,获得积分20
8秒前
苏幕遮发布了新的文献求助10
8秒前
SYLH应助allesueber采纳,获得20
10秒前
量子星尘发布了新的文献求助10
12秒前
顺利墨镜完成签到,获得积分10
13秒前
斯文败类应助顺利墨镜采纳,获得10
16秒前
张萌发布了新的文献求助100
16秒前
jun完成签到 ,获得积分10
19秒前
sdebulois完成签到 ,获得积分10
19秒前
bkagyin应助sff采纳,获得10
21秒前
SYLH应助allesueber采纳,获得20
21秒前
25秒前
失眠的香菇完成签到 ,获得积分10
26秒前
34秒前
量子星尘发布了新的文献求助10
34秒前
35秒前
脑洞疼应助苏幕遮采纳,获得10
36秒前
小闵完成签到,获得积分10
36秒前
sff发布了新的文献求助10
40秒前
起个名不麻烦完成签到 ,获得积分10
40秒前
张萌完成签到 ,获得积分10
41秒前
科目三应助科研通管家采纳,获得10
44秒前
Rita应助科研通管家采纳,获得10
44秒前
爆米花应助科研通管家采纳,获得10
44秒前
冰魂应助科研通管家采纳,获得20
44秒前
wanci应助科研通管家采纳,获得10
44秒前
Rita应助科研通管家采纳,获得10
44秒前
研友_VZG7GZ应助科研通管家采纳,获得10
44秒前
kingwill应助科研通管家采纳,获得20
44秒前
coolkid应助科研通管家采纳,获得10
44秒前
彭于晏应助科研通管家采纳,获得10
45秒前
45秒前
45秒前
Rita应助科研通管家采纳,获得10
45秒前
55秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865015
求助须知:如何正确求助?哪些是违规求助? 3407392
关于积分的说明 10654120
捐赠科研通 3131465
什么是DOI,文献DOI怎么找? 1727064
邀请新用户注册赠送积分活动 832108
科研通“疑难数据库(出版商)”最低求助积分说明 780166