Hierarchical Sequential Three-Way Multi-Attribute Decision-Making Method Based on Regret Theory in Multi-Scale Fuzzy Decision Systems

后悔 计算机科学 影响图 决策场理论 比例(比率) 最优决策 决策论 数据挖掘 决策分析 人工智能 证据推理法 机器学习 决策支持系统 数学 决策树 商业决策图 统计 物理 量子力学
作者
Jin Qian,Yuehua Lu,Ying Yu,Jie Zhou,Duoqian Miao
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (9): 4961-4975 被引量:2
标识
DOI:10.1109/tfuzz.2024.3397876
摘要

Most of the existing multi-attribute decision-making models under multi-scale decision information systems are established by selecting the optimal scale or fusing multi-scale information into a single scale. These models will lose part of the decision information, resulting in inaccurate decision results. However, sequential three-way decision can not only process information hierarchically, but also provide delayed decision between acceptance and rejection. In addition, the irrational behavior of decision-makers will have a certain impact on the decision-making results. To this end, for multi-scale and diversity decision-making problems, this paper proposes a hierarchical sequential three-way multi-attribute decision-making method based on regret theory. Specifically, to represent this diversity, the multi-scale evaluation information table is converted into a digital evaluation value table through a fuzzy membership function. Second, based on the regret-rejoicing function of regret theory, the regret-rejoicing relation of alternatives in multi-scale information systems is established, which can be used to calculate conditional probability. Third, the relative loss functions based on regret theory are proposed by considering the psychological behaviors of decision-makers. Finally, the hierarchical sequential three-way multi-attribute decision-making method for solving the multi-scale decision-making problem is proposed. The stability and effectiveness of the proposed method are verified by the corresponding experiments and the comparative analysis of practical cases. The proposed method solves the fusion problem of multi-scale decision information and obtains flexible ranking results according to the risk factor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助猪猪hero采纳,获得10
1秒前
王战辉完成签到,获得积分20
1秒前
3秒前
4秒前
渠安完成签到 ,获得积分10
4秒前
天天快乐应助ghifi37采纳,获得10
13秒前
sunny完成签到 ,获得积分10
16秒前
D515完成签到,获得积分10
22秒前
土豆完成签到,获得积分10
23秒前
23秒前
朴实以松完成签到,获得积分10
25秒前
ZYN完成签到,获得积分10
25秒前
林间完成签到 ,获得积分10
25秒前
科研通AI5应助ding采纳,获得10
27秒前
建丰完成签到,获得积分10
28秒前
30秒前
pluto应助B1n采纳,获得20
30秒前
32秒前
李健发布了新的文献求助10
33秒前
35秒前
金皮卡完成签到,获得积分10
37秒前
39秒前
jenningseastera应助Raymond采纳,获得10
40秒前
霍师傅发布了新的文献求助10
41秒前
隐形曼青应助初识采纳,获得10
43秒前
43秒前
ding发布了新的文献求助10
43秒前
李健完成签到,获得积分10
44秒前
告白气球完成签到,获得积分10
45秒前
烟花应助霍师傅采纳,获得30
46秒前
告白气球发布了新的文献求助10
49秒前
52秒前
陈纸溪完成签到 ,获得积分10
59秒前
59秒前
qiao发布了新的文献求助10
59秒前
996403211完成签到,获得积分10
1分钟前
1分钟前
猪猪hero发布了新的文献求助10
1分钟前
1分钟前
ghifi37发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778731
求助须知:如何正确求助?哪些是违规求助? 3324277
关于积分的说明 10217710
捐赠科研通 3039405
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798531
科研通“疑难数据库(出版商)”最低求助积分说明 758401